हिंदी

Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by f(x) = forotherwise{15 for 0≤x≤50 otherwise Find the probability that waiting time is between 1 and 3 minutes. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise"):}`

Find the probability that waiting time is between 1 and 3 minutes.

योग

उत्तर

P (waiting time is between 1 and 3 minutes)

P(1 < X < 3) = `int_1^3 f(x)*dx`

= `int_1^3 (1)/(5)*dx`

= `(1)/(5) int_1^3 1*dx`

= `(1)/(5)[x]_1^3`

= `(1)/(5)[3 - 1]`

= `(2)/(5)`

shaalaa.com
Probability Distribution of a Continuous Random Variable
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Probability Distributions - Exercise 8.2 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Exercise 8.2 | Q 1.06 | पृष्ठ १४५

संबंधित प्रश्न

Verify which of the following is p.d.f. of r.v. X:

 f(x) = 2, for 0 ≤ x ≤ 1.


Check whether the following is a p.d.f.

f(x) = 2  for 0 < x < q.


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(X > 2)


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x,  "for" 0 ≤ x ≤ 2),(0,  "otherwise".):}`
Calculate : P(X ≤ 1)


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(0.5 ≤ X ≤ 1.5)


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≥ 1.5)


Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(–1 < X < 1)


Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X < – 0.5 or X > 0.5)


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0,   "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)


If a r.v. X has p.d.f f(x) = `{("c"/x","  1 < x < 3"," "c" > 0),(0","  "otherwise"):}` 
Find c, E(X), and Var(X). Also Find F(x).


State whether the following is True or False :

If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`


Solve the following problem :

In the following probability distribution of a r.v.X.

x 1 2 3 4 5
P (x) `(1)/(20)` `(3)/(20)` a 2a `(1)/(20)`

Find a and obtain the c.d.f. of X.


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(–1 < X < 1)


Solve the following problem :

The p.d.f. of the r.v. X is given by

f(x) = `{("k"/sqrt(x), "for"  0 < x < 4.),(0, "otherwise".):}`
Determine k, the c.d.f. of X, and hence find P(X ≤ 2) and P(X ≥ 1).


State whether the following statement is True or False:

If f(x) = `{:("k"x  (1 - x)",", "for"  0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12


If the p.d.f. of X is

f(x) = `x^2/18,   - 3 < x < 3`

      = 0,        otherwise

Then P(X < 1) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×