Advertisements
Advertisements
Question
Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by
f(x) = `{(1/5, "for" 0 ≤ x ≤ 5),(0, "otherwise"):}`
Find the probability that waiting time is between 1 and 3 minutes.
Solution
P (waiting time is between 1 and 3 minutes)
P(1 < X < 3) = `int_1^3 f(x)*dx`
= `int_1^3 (1)/(5)*dx`
= `(1)/(5) int_1^3 1*dx`
= `(1)/(5)[x]_1^3`
= `(1)/(5)[3 - 1]`
= `(2)/(5)`
APPEARS IN
RELATED QUESTIONS
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is non-negative
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is even
Check whether the following is a p.d.f.
f(x) = `{(x, "for" 0 ≤ x ≤ 1),(2 - x, "for" 1 < x ≤ 2.):}`
Check whether the following is a p.d.f.
f(x) = 2 for 0 < x < q.
The following is the p.d.f. of a r.v. X.
f(x) = `{(x/(8), "for" 0 < x < 4),(0, "otherwise."):}`
Find P(X < 1.5),
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X < – 0.5 or X > 0.5)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(1 < X < 2)
If a r.v. X has p.d.f f(x) = `{("c"/x"," 1 < x < 3"," "c" > 0),(0"," "otherwise"):}`
Find c, E(X), and Var(X). Also Find F(x).
Choose the correct alternative :
If p.m.f. of r.v.X is given below.
x | 0 | 1 | 2 |
P(x) | q2 | 2pq | p2 |
Then Var(X) = _______
Fill in the blank :
If x is continuous r.v. and F(xi) = P(X ≤ xi) = `int_(-oo)^(oo) f(x)*dx` then F(x) is called _______
State whether the following is True or False :
If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`
Solve the following problem :
Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(–1 < X < 1)
Solve the following problem :
The p.d.f. of the r.v. X is given by
f(x) = `{((1)/(2"a")",", "for" 0 < x= 2"a".),(0, "otherwise".):}`
Show that `"P"("X" < "a"/2) = "P"("X" > (3"a")/2)`
Solve the following problem :
Determine k if the p.d.f. of the r.v. is
f(x) = `{("ke"^(-thetax), "for" 0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`
For the following probability density function of a random variable X, find P(X < 1).
`{:(f(x) = (x + 2)/18,";" "for" -2 < x < 4),( = 0,"," "otherwise"):}`
For the following probability density function of a random variable X, find P(|X| < 1).
`{:(f(x) = (x + 2)/18,";" "for" -2 < x < 4),( = 0,"," "otherwise"):}`