Advertisements
Advertisements
प्रश्न
Solve the following simultaneous equations by the substitution method:
2x + 3y = 31
5x - 4 = 3y
उत्तर
The given equations are
2x + 3y = 31 ....(i)
5x - 4 = 3y ....(ii)
Now, consider equation
2x + 3y = 31
⇒ 2x = 31 - 3y
⇒ x = `(31 - 3y)/(2)` ....(iii)
Substituting the value of x in eqn. (ii), we get
`5((31-3y)/(2)) - 4` = 3y
⇒ `(155 - 15y)/(2) - 4` = 3y
⇒ `(155 - 15y - 8)/(2)` = 3y
⇒ 147 - 15y = 6y
⇒ 21y = 147
⇒ y = `(147)/(21) = 7`
Putting the value of y in eqn. (iii), we get
x = `(31 - 3(7))/(2)`
= `(31 - 21)/(2)`
= `(10)/(2)`
= 5
Thus, the solution set is (5, 7).
APPEARS IN
संबंधित प्रश्न
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
y = 4x - 7
16x - 5y = 25
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 7y = 39
3x + 5y = 31
Solve the following pair of linear (Simultaneous ) equation using method of elimination by substitution :
2( x - 3 ) + 3( y - 5 ) = 0
5( x - 1 ) + 4( y - 4 ) = 0
Solve th following pair of linear (Simultaneous ) equation using method of elimination by substitution :
`[ 2x + 1]/7 + [5y - 3]/3 = 12`
`[3x + 2 ]/2 - [4y + 3]/9 = 13`
Solve the following pairs of linear (simultaneous) equation using method of elimination by substitution:
`x/6 + y/15 = 4`
`x/3 - y/12 = 4 3/4`
Solve the following simultaneous equations by the substitution method:
x + 3y= 5
7x - 8y = 6
Solve the following simultaneous equations by the substitution method:
5x + 4y - 23 = 0
x + 9 = 6y
Solve the following simultaneous equations by the substitution method:
7x - 3y = 31
9x - 5y = 41
Solve the following simultaneous equations by the substitution method:
0.5x + 0.7y = 0.74
0.3x + 0.5y = 0.5
Solve the following simultaneous equations by the substitution method:
0.4x + 0.3y = 1.7
0.7x - 0.2y = 0.8
Solve the following simultaneous equations by the substitution method:
7(y + 3) - 2(x + 2) = 14
4(y - 2) + 3(x - 3) = 2
A father's age is three times the age of his child. After 12 years, twice the age of father will be 36 more than thrice the age of his child. Find his present age.
* Question modified
The ratio of passed and failed students in an examination was 3 : 1. Had 30 less appeared and 10 less failed, the ratio of passes to failures would have been 13 : 4. Find the number of students who appeared for the examination.
Solve by the method of elimination
2x – y = 3, 3x + y = 7
Solve by the method of elimination
x – y = 5, 3x + 2y = 25
Solve by the method of elimination
`x/10 + y/5` = 14, `x/8 + y/6` = 15