हिंदी

Solve for X: 3 ( 7 X + 1 5 X − 3 ) − 4 ( 5 X − 3 7 X + 1 ) = 11 ; X ≠ 3 5 , − 1 7 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve for x:

\[3\left( \frac{7x + 1}{5x - 3} \right) - 4\left( \frac{5x - 3}{7x + 1} \right) = 11; x \neq \frac{3}{5}, - \frac{1}{7}\]

उत्तर

We have:

\[3\left( \frac{7x + 1}{5x - 3} \right) - 4 \left( \frac{5x - 3}{7x + 1} \right) = 11; x \neq \frac{3}{5}, - \frac{1}{7}\]
Let
\[\frac{7x + 1}{5x - 3} = y\]
\[3y - 4\left( \frac{1}{y} \right) = 11\]
\[\Rightarrow 3 y^2 - 4 = 11y\]
\[\Rightarrow 3 y^2 - 11y - 4 = 0\]
\[\Rightarrow 3 y^2 - 12y + y - 4 = 0\]
\[\Rightarrow 3y\left( y - 4 \right) + 1\left( y - 4 \right) = 0\]
\[\Rightarrow \left( y - 4 \right) \left( 3y + 1 \right) = 0\]
\[\Rightarrow y = 4 or y = - \frac{1}{3}\]
On putting the values of y in equation (1), we get:
For y = 4, we have:
\[\frac{7x + 1}{5x - 3} = 4\]
\[\Rightarrow 7x + 1 = 4(5x - 3)\]
\[\Rightarrow 7x + 1 = 20x - 12\]
\[\Rightarrow 13x = 13\]
\[ \Rightarrow x = 1\]
For \[y = - \frac{1}{3}\]
\[\frac{7x + 1}{5x - 3} = - \frac{1}{3}\]
\[\Rightarrow 3\left( 7x + 1 \right) = - \left( 5x - 3 \right)\]
\[\Rightarrow 21x + 3 = - 5x + 3\]
\[\Rightarrow 26x = 0\]
\[\Rightarrow x = 0\]
Hence, the required solutions for x are 0 and 1.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Foreign Set 3

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×