हिंदी

Split 207 into three parts such that these parts are in A.P. and the product of the two smaller parts in 4623. - Mathematics

Advertisements
Advertisements

प्रश्न

Split 207 into three parts such that these parts are in A.P. and the product of the two smaller parts in 4623.

योग

उत्तर

Let the three parts in A.P. be (a – d), a and (a + d)

Then, (a – d) + a + (a + d) = 207 

`\implies` 3a = 207

`\implies` a = `207/3` = 69

It is given that 

(a – d) × a = 4623

`\implies` (69 – d) × 69 = 4623

`\implies` 69 – d = `4623/69` = 67

`\implies` d = 69 – 67 = 2

`\implies` a = 69 and d = 2

Thus, we have 

a – d = 69 – 2 = 67

a = 69

a + d = 69 + 2 = 71

Thus, the three parts in A.P. are 67, 69 and 71.

shaalaa.com
Simple Applications of Arithmetic Progression
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Arithmetic Progression - Exercise 10 (D) [पृष्ठ १४६]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 10 Arithmetic Progression
Exercise 10 (D) | Q 6 | पृष्ठ १४६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×