Advertisements
Advertisements
प्रश्न
State the universal law of gravitation and derive its mathematical expression.
उत्तर
This law states that every particle of matter in this universe attracts every other particle with a force. This force is directly proportional to the product of their masses and inversely proportional to the square of the distance between the centers of these masses. The direction of the force acts along the line joining the masses.
gravitational force between two masses
The force between the masses is always attractive and it does not depend on the medium where they are placed.
Let, m1 and m2 be the masses of two bodies A and B placed r metre apart in space.
Force F ∝ m1 × m2
F ∝ 1/r2
On combining the above two expressions
F ∝ `("m"_1xx"m"_2)/"r"^2`
F = `("Gm"_1"m"_2)/r^2`
Where G is the universal gravitational constant.
Its value in SI unit is 6.674 × 10-11 Nm2 kg-2.
APPEARS IN
संबंधित प्रश्न
What is the magnitude of the gravitational force between the earth and a 1 kg object on its surface? (Mass of the earth is 6 × 1024 kg and radius of the earth is 6.4 × 106 m).
Two concentric spherical shells have masses M1, M2 and radii R1, R2 (R1 < R2). What is the force exerted by this system on a particle of mass m1 if it is placed at a distance (R1+ R2)/2 from the centre?
The gravitational field in a region is given by \[E = \left( 2 \overrightarrow{i} + 3 \overrightarrow{j} \right) N {kg}^{- 1}\] . Show that no work is done by the gravitational field when a particle is moved on the line 3y + 2x = 5.
[Hint : If a line y = mx + c makes angle θ with the X-axis, m = tan θ.]
Distinguish between gravity and gravitation
Where will you weigh more: at the centre of the earth or at the surface of the earth?
What is the difference between gravity and gravitation?
The distance-time values for an object moving along straight line are given below:
Time (s) | Distance (m) |
0 | 0 |
1 | 1 |
2 | 8 |
3 | 27 |
As observed from earth, the sun appears to move in an approximate circular orbit. For the motion of another planet like mercury as observed from earth, this would ______.
Different points in earth are at slightly different distances from the sun and hence experience different forces due to gravitation. For a rigid body, we know that if various forces act at various points in it, the resultant motion is as if a net force acts on the c.m. (centre of mass) causing translation and a net torque at the c.m. causing rotation around an axis through the c.m. For the earth-sun system (approximating the earth as a uniform density sphere).
Give scientific reasons for the following:
Newton's gravitational law is the universal law of gravitation.