हिंदी

State which of the following statement is True or False. If xy > 0, then x > 0 and y < 0 - Mathematics

Advertisements
Advertisements

प्रश्न

State which of the following statement is True or False.

If xy > 0, then x > 0 and y < 0

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

If x, y > 0 then x > 0, y > 0 or x < 0, y < 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Linear Inequalities - Exercise [पृष्ठ १११]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 6 Linear Inequalities
Exercise | Q 31.(ii) | पृष्ठ १११

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the given inequality graphically in two-dimensional plane: x + y < 5


Solve the given inequality graphically in two-dimensional plane: 2x + y ≥ 6


Solve the given inequality graphically in two-dimensional plane: 3x + 4y ≤ 12


Solve the given inequality graphically in two-dimensional plane: x – y ≤ 2


Solve the given inequality graphically in two-dimensional plane: x > –3


Solve the following inequalities and represent the solution graphically on number line:

3x – 7 > 2(x – 6), 6 – x > 11 – 2x


A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added?


Solve the following systems of linear inequation graphically:

 2x + 3y ≤ 6, 3x + 2y ≤ 6, x ≥ 0, y ≥ 0 


Solve the following systems of linear inequations graphically: 

x − y ≤ 1, x + 2y ≤ 8, 2x + y ≥ 2, x ≥ 0, y ≥ 0


Solve the following systems of linear inequations graphically: 

 x + y ≥ 1, 7x + 9y ≤ 63, x ≤ 6, y ≤ 5, x ≥ 0, y ≥ 0 


Show that the solution set of the following linear inequations is empty set: 

 x − 2y ≥ 0, 2x − y ≤ −2, x ≥ 0, y ≥ 0 


Show that the solution set of the following linear inequations is empty set: 

x + 2y ≤ 3, 3x + 4y ≥ 12, y ≥ 1, ≥ 0, y ≥ 0 


Find the linear inequations for which the solution set is the shaded region given in Fig. 15.42 


Solve the following systems of inequations graphically: 

12x + 12y ≤ 840, 3x + 6y ≤ 300, 8x + 4y ≤ 480, x ≥ 0, y ≥ 0


Solve the following systems of inequations graphically: 

x + 2y ≤ 40, 3x + y ≥ 30, 4x + 3y ≥ 60, x ≥ 0, y ≥ 0 


Show that the following system of linear equations has no solution:  

\[x + 2y \leq 3, 3x + 4y \geq 12, x \geq 0, y \geq 1\]


Show that the solution set of the following system of linear inequalities is an unbounded region:  

\[2x + y \geq 8, x + 2y \geq 10, x \geq 0, y \geq 0\] 


Mark the correct alternative in each of the following:

If x\[<\]7, then


Write the solution of the inequation\[\frac{x^2}{x - 2} > 0\]


Find the linear inequalities for which the shaded region in the given figure is the solution set.


State which of the following statement is True or False.

If xy > 0, then x < 0 and y < 0


Graph of x < 3 is


Graph of y ≤ 0 is


Solution set of x + y ≥ 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×