Advertisements
Advertisements
प्रश्न
The area enclosed between the parabola y2 = 4x and line y = 2x is ______.
विकल्प
`(2)/(3)` sq units
`(1)/(3)` sq unit
`(1)/(4)` sq unit
`(3)/(4)` sq unit
उत्तर
The area enclosed between the parabola y2 = 4x and line y = 2x is `bbunderline((1)/(3) "sq unit")`.
Explanation:
Area = `int_0^1 [2sqrt x - 2x]`
= `2[(x^(3//2))/(3/2) - x^2/2]_0^1`
= `2(2/3 - 1/2) xx 1`
= `4/3 - 1`
`1/3` sq. units.
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the following curves, X-axis and the given lines: x = 2y, y = 0, y = 4
Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`
Find the area of the region bounded by the following curves, X-axis and the given lines : x = 0, x = 5, y = 0, y = 4
Find the area of the region bounded by the following curves, X-axis and the given lines: xy = 2, x = 1, x = 4
Find the area of the region bounded by the following curves, X-axis and the given lines: y2 = 16x, x = 0, x = 4
Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.
Find the area of the region included between y = x2 + 3 and the line y = x + 3.
Choose the correct option from the given alternatives :
The area of the region enclosed by the curve y = `(1)/x`, and the lines x = e, x = e2 is given by
Choose the correct option from the given alternatives :
The area of the region bounded between the line x = 4 and the parabola y2 = 16x is ______.
Choose the correct option from the given alternatives :
The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is
Choose the correct option from the given alternatives :
The area under the curve y = `2sqrt(x)`, enclosed between the lines x = 0 and x = 1 is
Choose the correct option from the given alternatives :
The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is
Choose the correct option from the given alternatives :
The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is
Choose the correct option from the given alternatives :
The area bounded by the parabola y = x2 and the line y = x is
The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.
Choose the correct option from the given alternatives :
The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by
Solve the following :
Find the area of the region in first quadrant bounded by the circle x2 + y2 = 4 and the X-axis and the line x = `ysqrt(3)`.
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = π
Solve the following :
Find the area of the region lying between the parabolas : 4y2 = 9x and 3x2 = 16y
Solve the following :
Find the area of the region lying between the parabolas : y2 = x and x2 = y.
Solve the following :
Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.
Solve the following :
Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.
The area bounded by the parabola y2 = x along the X-axis and the lines x = 0, x = 2 is ______ sq.units
The area bounded by the curve y2 = x2, and the line x = 8 is ______
Find the area bounded by the curve y2 = 36x, the line x = 2 in first quadrant
Find the area bounded by the curve y = sin x, the lines x = 0 and x = `pi/2`
Find the area of the region bounded by the curve y = x2, the X−axis and the given lines x = 0, x = 3
Using integration, find the area of the region bounded by the line 2y + x = 8 , X−axis and the lines x = 2 and x = 4
Find the area of the region bounded by the parabola x2 = 4y and The X-axis and the line x = 1, x = 4
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4
Find the area of the region bounded by the curves x2 = 8y, y = 2, y = 4 and the Y-axis, lying in the first quadrant
Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay
The area bounded by the curve y = x3, the X-axis and the Lines x = –2 and x = 1 is ______.
Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0, y = 2 and y = 4.
Find the area common to the parabola y2 = x – 3 and the line x = 5.