Advertisements
Advertisements
प्रश्न
The band gap between the valence and the conduction bands in zinc oxide (ZnO) is 3.2 eV. Suppose an electron in the conduction band combines with a hole in the valence band and the excess energy is released in the form of electromagnetic radiation. Find the maximum wavelength that can be emitted in this process.
उत्तर
Given:
Band gap = 3.2 eV
As the electron in the conduction band combines with the hole in the valence band, the minimum energy band gap (because maximum energy is released) through which the electron has to jump will be equal to the band gap of the material.
This implies that the maximum energy released in this process will be equal to the band gap of the material.
\[\text{ Here }, \]
E = 3 . 2 eV
\[\text{ Thus, }\]
\[ \Rightarrow 3 . 2 \text{ eV } = \frac{1242 \text{ eV - nm} }{\lambda}\]
\[ \Rightarrow \lambda = 388 . 1 \text{ nm }\]
APPEARS IN
संबंधित प्रश्न
Draw separate energy band diagram for conductors, semiconductors and insulators and
label each of them.
Draw energy band diagrams of an n-type and p-type semiconductor at temperature T > 0 K. Mark the donor and acceptor energy levels with their energies.
Write two characteristic features to distinguish between n-type and p-type semiconductors ?
When an electron goes from the valence band to the conduction band in silicon, its energy is increased by 1.1 eV. The average energy exchanged in a thermal collision is of the order of kT which is only 0.026 eV at room temperature. How is a thermal collision able to take some to the electrons from the valence band to the conduction band?
We have valence electrons and conduction electrons in a semiconductor. Do we also have 'valence holes' and 'conduction holes'?
Electric conduction in a semiconductor takes place due to
When an impurity is doped into an intrinsic semiconductor, the conductivity of the semiconductor
The impurity atoms with which pure silicon may be doped to make it a p-type semiconductor are those of
(a) phosphorus
(b) boron
(c) antimony
(d) aluminium.
In a pure semiconductor, the number of conduction election 6 × 1019 per cubic metre. How many holes are there in a sample of size 1 cm × 1 mm?
When a semiconducting material is doped with an impurity, new acceptor levels are created. In a particular thermal collision, a valence electron receives an energy equal to 2kT and just reaches one of the acceptor levels. Assuming that the energy of the electron was at the top edge of the valence band and that the temperature T is equal to 300 K, find the energy of the acceptor levels above the valence band.
Let ΔE denote the energy gap between the valence band and the conduction band. The population of conduction electrons (and of the holes) is roughly proportional to e−ΔE/2kT. Find the ratio of the concentration of conduction electrons in diamond to the in silicon at room temperature 300 K. ΔE for silicon is 1.1 eV and for diamond is 6.1 eV. How many conduction electrons are likely to be in one cubic metre of diamond?
The conductivity of a pure semiconductor is roughly proportional to T3/2 e−ΔE/2kT where ΔE is the band gap. The band gap for germanium is 0.74 eV at 4 K and 0.67 eV at 300 K. By what factor does the conductivity of pure germanium increase as the temperature is raised from 4 K to 300 K?
The conductivity of an intrinsic semiconductor depends on temperature as σ = σ0e−ΔE/2kT, where σ0 is a constant. Find the temperature at which the conductivity of an intrinsic germanium semiconductor will be double of its value at T = 300 K. Assume that the gap for germanium is 0.650 eV and remains constant as the temperature is increased.
(Use Planck constant h = 4.14 × 10-15 eV-s, Boltzmann constant k = 8·62 × 10-5 eV/K.)
A window air conditioner is placed on a table inside a well-insulated apartment, plugged in and turned on. What happens to the average temperature of the apartment?
Two radioactive substances A and B have decay constants 3λ and λ respectively. At t = 0 they have the same number of nuclei. The ratio of the number of nuclei of A to those of B will be `1/"e"` after a time interval:
An n-type semiconductor is
For germanium crystal, the forbidden gas energy gap
The valance of an impurity added to germanium crystal in order to convert it into p-type semiconductor is
With reference to semiconductor physics, answer the following question.
What is meant by “Forbidden band" of energy levels?