Advertisements
Advertisements
प्रश्न
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Evaluate p(x < 6), p(x ≥ 6) and p(0 < x < 5)
उत्तर
P(x < 6) = P(x = 0) + P(x = 1) + P(x = 2)+ P(x = 3) + p(x = 4) + P(x = 5)
= 0 + k + 2k +2k + 3k + k2
= 8k + k2
= `8(1/10) + (1/10)^2`
= `8/10 + 1/100`
= `(80 + 1)/100`
P(x < 6) = `81/100`
P(x ≥ 6) = P(x = 6) + p(x = 7)
= 2k2 + 7k2 + k
= 9k2 + k
= `9(1/10)^2 + 1/10`
= `9/100 + 1/10`
= `(9 + 10)/100`
= `19/100`
∴ P(x ≥ 6) = 19/100`
P(0 < x < 5) = P(x = 1) + P(x = 2) + p(x = 3) + P(x = 4)
= k + 2k + 2k + 3k
= 8k
= `8(1/10)`
∴ P(0 < x < 5) = `8/10`
APPEARS IN
संबंधित प्रश्न
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find k
A continuous random variable X has the following distribution function
F(x) = `{{:(0",", "if" x ≤ 1),("k"(x - 1)^4",", "if" 1 < x ≤ 3),(1",", "if" x > 3):}`
Find the Probability density function
Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function
F(x) = `{{:(0",", "for" x ≤ 0),(x/2",", "for" 0 ≤ x < 1),(1/2",", "for" ≤ x < 2),(x/4",", "for" 2 ≤ x < 4),(1",", "for" x ≥ 4):}`
What is the probability that a person will have to wait (i) more than 3 minutes, (ii) less than 3 minutes and (iii) between 1 and 3 minutes?
Describe what is meant by a random variable
Explain the terms probability Mass function
Choose the correct alternative:
If we have f(x) = 2x, 0 ≤ x ≤ 1, then f(x) is a
Choose the correct alternative:
A variable which can assume finite or countably infinite number of values is known as
Choose the correct alternative:
The probability function of a random variable is defined as
X = x | – 1 | – 2 | 0 | 1 | 2 |
P(x) | k | 2k | 3k | 4k | 5k |
Then k is equal to
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)
The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",", x = 1),(3k",", x = 3),(4k",", x = 5),(0",", "otherwise"):}`
where k is some constant. Find P(X > 2)