मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

The discrete random variable X has the probability function. Valueof X = x 0 1 2 3 4 5 6 7 P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k Evaluate p(x < 6), p(x ≥ 6) and p(0 < x < 5) - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The discrete random variable X has the probability function.

Value
of X = x
0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Evaluate p(x < 6), p(x ≥ 6) and p(0 < x < 5)

बेरीज

उत्तर

P(x < 6) = P(x = 0) + P(x = 1) + P(x = 2)+ P(x = 3) + p(x = 4) + P(x = 5)

= 0 + k + 2k +2k + 3k + k2

= 8k + k2 

= `8(1/10) +  (1/10)^2`

= `8/10 + 1/100`

= `(80 + 1)/100`

P(x < 6) = `81/100`

P(x ≥ 6) = P(x = 6) + p(x = 7)

= 2k2 + 7k2 + k

= 9k2 + k

= `9(1/10)^2 + 1/10`

= `9/100 + 1/10`

= `(9 + 10)/100`

= `19/100`

∴ P(x ≥ 6) = 19/100`

P(0 < x < 5) = P(x = 1) + P(x = 2) + p(x = 3) + P(x = 4)

= k + 2k + 2k + 3k

= 8k

= `8(1/10)`

∴ P(0 < x < 5) = `8/10`

shaalaa.com
Random Variable
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Random Variable and Mathematical expectation - Exercise 6.1 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 6 Random Variable and Mathematical expectation
Exercise 6.1 | Q 6. (ii) | पृष्ठ १३३

संबंधित प्रश्‍न

In a pack of 52 playing cards, two cards are drawn at random simultaneously. If the number of black cards drawn is a random variable, find the values of the random variable and number of points in its inverse images


The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as 
f(x) = `{{:("Ae"^((-x)/5)",",  "for"  x ≥ 0),(0",",  "otherwise"):}`
What is the probability that the number of minutes that person will talk over the phone is (i) more than 10 minutes, (ii) less than 5 minutes and (iii) between 5 and 10 minutes


What do you understand by continuous random variable?


Choose the correct alternative: 

If we have f(x) = 2x, 0 ≤ x ≤ 1, then f(x) is a


The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(X ≤ 0)


The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)


Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",",  "if"  x  < 0),(x/8",",  "if"  0 ≤ x ≤ 1),(1/4 + x/8",",  "if"  1 ≤ x ≤ 2),(3/4 + x/12",",  "if"  2 ≤ x < 3),(1",",  "for"  3 ≤ x):}`
Compute: (i) P(1 ≤ X ≤ 2) and (ii) P(X = 3)


The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",",  x = 1),(3k",",  x = 3),(4k",", x = 5),(0",",  "otherwise"):}`
where k is some constant. Find P(X > 2) 


The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",",  0 ≤ x ≤ 1),(0",",  "otherwise"):}`
where a and b are some constants. Find Var(X)


Consider a random variable X with p.d.f.
f(x) = `{(3x^2",",  "if"  0 < x < 1),(0",",  "otherwise"):}`
Find E(X) and V(3X – 2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×