मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

The discrete random variable X has the probability function. Valueof X = x 0 1 2 3 4 5 6 7 P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k If P(X ≤ x) > 12, then find the minimum value of x. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The discrete random variable X has the probability function.

Value
of X = x
0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

If P(X ≤ x) > `1/2`, then find the minimum value of x.

बेरीज

उत्तर

We want the minimum value of x for which P(X ≥ x) > `1/2`

Now P(X ≤ 0) = `0 < 1/2`

P(X ≤ 1) = P(x = 0) + P(X = 1) = 0 + k

= `1/10 < 1/2`

P( X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

= 0 + k + 2k = 3k

= `3/10 = 1/2`

P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 2) + P(X = 3)

= 0 + k + 2k + 2k = 5k

= `5/10 = 1/2`

P(X ≤ 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 2) + P(X = 3) + P(X = 4)

= 0 + k + 2k + 2k + 3k = 8k

= `8/10 > 1/2`

This Shows that the minimum value of X for which P(X ≤ x) > `1/2` is 4

shaalaa.com
Random Variable
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Random Variable and Mathematical expectation - Exercise 6.1 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 6 Random Variable and Mathematical expectation
Exercise 6.1 | Q 6. (iii) | पृष्ठ १३३

संबंधित प्रश्‍न

Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that we win ₹ 15 for each red ball selected and we lose ₹ 10 for each black ball selected. X denotes the winning amount, then find the values of X and number of points in its inverse images


The distribution of a continuous random variable X in range (– 3, 3) is given by p.d.f.
f(x) = `{{:(1/16(3 + x)^2",", - 3 ≤ x ≤ - 1),(1/16(6 - 2x^2)",", - 1 ≤ x ≤ 1),(1/16(3 - x)^2",", 1 ≤ x ≤ 3):}`
Verify that the area under the curve is unity.


A continuous random variable X has the following distribution function
F(x) = `{{:(0",",  "if"  x ≤ 1),("k"(x - 1)^4",",  "if"  1 < x ≤ 3),(1",",  "if"  x > 3):}`
Find k


Define random variable


Explain what are the types of random variable?


Explain the terms probability density function


What are the properties of continuous random variable?


The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(X < 0)


The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(0 ≤ X ≤ 10)


The p.d.f. of X is defined as
f(x) = `{{:("k"",",  "for"  0 < x ≤ 4),(0",",  "otherwise"):}`
Find the value of k and also find P(2 ≤ X ≤ 4)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×