Advertisements
Advertisements
प्रश्न
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(0 ≤ X ≤ 10)
उत्तर
X | – 2 | 0 | 10 |
P(X = x) | `1/4` | `1/4` | `1/2` |
P(0 ≤ X ≤ 10) = P(X = 0) + P(X = 10)
=`1/4 + 1/2`
= `(1 + 2)/4`
= `3/4`
APPEARS IN
संबंधित प्रश्न
A continuous random variable X has the following distribution function
F(x) = `{{:(0",", "if" x ≤ 1),("k"(x - 1)^4",", "if" 1 < x ≤ 3),(1",", "if" x > 3):}`
Find the Probability density function
What do you understand by continuous random variable?
State the properties of distribution function.
Choose the correct alternative:
If the random variable takes negative values, then the negative values will have
Choose the correct alternative:
A variable which can assume finite or countably infinite number of values is known as
Choose the correct alternative:
The probability function of a random variable is defined as
X = x | – 1 | – 2 | 0 | 1 | 2 |
P(x) | k | 2k | 3k | 4k | 5k |
Then k is equal to
Choose the correct alternative:
In a discrete probability distribution, the sum of all the probabilities is always equal to
Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",", "if" x < 0),(x/8",", "if" 0 ≤ x ≤ 1),(1/4 + x/8",", "if" 1 ≤ x ≤ 2),(3/4 + x/12",", "if" 2 ≤ x < 3),(1",", "for" 3 ≤ x):}`
Is X a discrete random variable? Justify your answer
The p.d.f. of X is defined as
f(x) = `{{:("k"",", "for" 0 < x ≤ 4),(0",", "otherwise"):}`
Find the value of k and also find P(2 ≤ X ≤ 4)
The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
where a and b are some constants. Find a and b if E(X) = `3/5`