Advertisements
Advertisements
प्रश्न
State the properties of distribution function.
उत्तर
The function Fx(x) or simply F(x) has the following properties.
(i) 0 ≤ F(x) ≤ 1, `-∞` < x < `∞`
(ii) `"F"(-∞) = lim_(x -> - oo) "F"(x) = 0 "and" "F"(+ oo) = lim_(x -> oo) "F"(x)` = 1.
(iii) F(.) is a monotone, non-decreasing function; that is, F(a) < F(b) for a < b.
(iv) F(.) is continuous from the right; that is, `lim_("h" -> 0) "F"(x + "h")` = F(x).
(v) F(x) = `"d"/("d"x) "F"(x) = "f"(x) ≥ 0`
(vi) F'(x) = `"d"/("d"x) "F"(x)` = f(x) ⇒ dF(x) = f(x)dx
dF(x) is known as probability differential of X.
(vii) P(a ≤ x ≤ b) = `int_"a"^"b" "f"(x) "d"x = int_(-oo)^"b" "f"(x) "d"x - int_(-oo)^"a" "f"(x) "d"x`
= P(X ≤ b) – P(X ≤ a)
= F(b) – F(a)
APPEARS IN
संबंधित प्रश्न
In a pack of 52 playing cards, two cards are drawn at random simultaneously. If the number of black cards drawn is a random variable, find the values of the random variable and number of points in its inverse images
A six sided die is marked ‘2’ on one face, ‘3’ on two of its faces, and ‘4’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the values of the random variable and number of points in its inverse images
Construct cumulative distribution function for the given probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | 0.3 | 0. | 0.4 | 0.1 |
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Evaluate p(x < 6), p(x ≥ 6) and p(0 < x < 5)
A continuous random variable X has the following distribution function
F(x) = `{{:(0",", "if" x ≤ 1),("k"(x - 1)^4",", "if" 1 < x ≤ 3),(1",", "if" x > 3):}`
Find k
Choose the correct alternative:
If c is a constant in a continuous probability distribution, then p(x = c) is always equal to
Choose the correct alternative:
If we have f(x) = 2x, 0 ≤ x ≤ 1, then f(x) is a
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)
Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",", "if" x < 0),(x/8",", "if" 0 ≤ x ≤ 1),(1/4 + x/8",", "if" 1 ≤ x ≤ 2),(3/4 + x/12",", "if" 2 ≤ x < 3),(1",", "for" 3 ≤ x):}`
Compute: (i) P(1 ≤ X ≤ 2) and (ii) P(X = 3)
The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
where a and b are some constants. Find a and b if E(X) = `3/5`