Advertisements
Advertisements
प्रश्न
In a pack of 52 playing cards, two cards are drawn at random simultaneously. If the number of black cards drawn is a random variable, find the values of the random variable and number of points in its inverse images
उत्तर
Total number of playing cards = 52
Number of Black cards = 26
Number of Non-black or Red cards = 26
Let ‘X’ be the random variable denotes the number of black cards. Since two black cards are drawn, ’X’ takes the values 0, 1, 2
X(Non-black Cards) = X(26C1 × 25C1) = X(650) = 0
X(1 Black Card) = X(26C1 × 26C0) = X(26) = 1
X(2 Black Cards) = X(26C1 × 25C1) = X(650) = 2
Values of X | 0 | 1 | 2 | Total |
Number of elements in inverse images | 650 | 26 | 650 | 1326 |
APPEARS IN
संबंधित प्रश्न
Construct cumulative distribution function for the given probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | 0.3 | 0. | 0.4 | 0.1 |
Let X be a discrete random variable with the following p.m.f
`"P"(x) = {{:(0.3, "for" x = 3),(0.2, "for" x = 5),(0.3, "for" x = 8),(0.2, "for" x = 10),(0, "otherwise"):}`
Find and plot the c.d.f. of X.
Two coins are tossed simultaneously. Getting a head is termed a success. Find the probability distribution of the number of successes
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Evaluate p(x < 6), p(x ≥ 6) and p(0 < x < 5)
The distribution of a continuous random variable X in range (– 3, 3) is given by p.d.f.
f(x) = `{{:(1/16(3 + x)^2",", - 3 ≤ x ≤ - 1),(1/16(6 - 2x^2)",", - 1 ≤ x ≤ 1),(1/16(3 - x)^2",", 1 ≤ x ≤ 3):}`
Verify that the area under the curve is unity.
The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as
f(x) = `{{:("Ae"^((-x)/5)",", "for" x ≥ 0),(0",", "otherwise"):}`
Find the value of A that makes f(x) a p.d.f.
The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as
f(x) = `{{:("Ae"^((-x)/5)",", "for" x ≥ 0),(0",", "otherwise"):}`
What is the probability that the number of minutes that person will talk over the phone is (i) more than 10 minutes, (ii) less than 5 minutes and (iii) between 5 and 10 minutes
Explain what are the types of random variable?
Describe what is meant by a random variable
Distinguish between discrete and continuous random variables.
State the properties of distribution function.
Choose the correct alternative:
If c is a constant, then E(c) is
Choose the correct alternative:
Which one is not an example of random experiment?
Choose the correct alternative:
A set of numerical values assigned to a sample space is called
Choose the correct alternative:
In a discrete probability distribution, the sum of all the probabilities is always equal to
Choose the correct alternative:
The probability density function p(x) cannot exceed
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(X ≤ 0)
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(0 ≤ X ≤ 10)
Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",", "if" x < 0),(x/8",", "if" 0 ≤ x ≤ 1),(1/4 + x/8",", "if" 1 ≤ x ≤ 2),(3/4 + x/12",", "if" 2 ≤ x < 3),(1",", "for" 3 ≤ x):}`
Compute: (i) P(1 ≤ X ≤ 2) and (ii) P(X = 3)