हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा १२

The probability function of a random variable X is given byp(x) = ,for,for,for,elsewhere{14, for x=-214, for x=012, for x=100, elsewhereEvaluate the following probabilitiesP(0 ≤ X ≤ 10) - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(0 ≤ X ≤ 10)

सारिणी
योग

उत्तर

X – 2 0 10
P(X = x) `1/4` `1/4` `1/2`

P(0 ≤ X ≤ 10) = P(X = 0) + P(X = 10)

=`1/4 + 1/2`

= `(1 + 2)/4`

= `3/4`

shaalaa.com
Random Variable
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Random Variable and Mathematical expectation - Miscellaneous problems [पृष्ठ १४३]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
अध्याय 6 Random Variable and Mathematical expectation
Miscellaneous problems | Q 1. (iv) | पृष्ठ १४३

संबंधित प्रश्न

Choose the correct alternative:

Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are


The distribution of a continuous random variable X in range (– 3, 3) is given by p.d.f.
f(x) = `{{:(1/16(3 + x)^2",", - 3 ≤ x ≤ - 1),(1/16(6 - 2x^2)",", - 1 ≤ x ≤ 1),(1/16(3 - x)^2",", 1 ≤ x ≤ 3):}`
Verify that the area under the curve is unity.


Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function

F(x) = `{{:(0",",  "for"  x ≤ 0),(x/2",",  "for"  0 ≤ x < 1),(1/2",",  "for" ≤ x < 2),(x/4",",  "for"  2 ≤ x < 4),(1",",  "for"  x ≥ 4):}` 
Is the distribution function continuous? If so, give its probability density function?


Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function

F(x) = `{{:(0",",  "for"  x ≤ 0),(x/2",",  "for"  0 ≤ x < 1),(1/2",",  "for" ≤ x < 2),(x/4",",  "for"  2 ≤ x < 4),(1",",  "for"  x ≥ 4):}` 
What is the probability that a person will have to wait (i) more than 3 minutes, (ii) less than 3 minutes and (iii) between 1 and 3 minutes?


Describe what is meant by a random variable


Choose the correct alternative: 

Which one is not an example of random experiment?


The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(X ≤ 0)


The p.d.f. of X is defined as
f(x) = `{{:("k"",",  "for"  0 < x ≤ 4),(0",",  "otherwise"):}`
Find the value of k and also find P(2 ≤ X ≤ 4)


The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",",  x = 1),(3k",",  x = 3),(4k",", x = 5),(0",",  "otherwise"):}`
where k is some constant. Find P(X > 2) 


The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",",  0 ≤ x ≤ 1),(0",",  "otherwise"):}`
where a and b are some constants. Find a and b if E(X) = `3/5`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×