हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Choose the correct alternative: Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are - Mathematics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are

विकल्प

  • i + 2n, i = 0, 1, 2 …, n

  • 2i – n, i = 0, 1, 2 …, n

  • n – i, i = 0, 1, 2 …, n

  • 2i + 2n, i = 0, 1, 2 …, n

MCQ

उत्तर

2i – n, i = 0, 1, 2 …, n

shaalaa.com
Random Variable
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Probability Distributions - Exercise 11.6 [पृष्ठ २१९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 11 Probability Distributions
Exercise 11.6 | Q 6 | पृष्ठ २१९

संबंधित प्रश्न

Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable X and number of points in its inverse images


The discrete random variable X has the probability function.

Value
of X = x
0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Find k


The discrete random variable X has the probability function.

Value
of X = x
0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

If P(X ≤ x) > `1/2`, then find the minimum value of x.


Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function

F(x) = `{{:(0",",  "for"  x ≤ 0),(x/2",",  "for"  0 ≤ x < 1),(1/2",",  "for" ≤ x < 2),(x/4",",  "for"  2 ≤ x < 4),(1",",  "for"  x ≥ 4):}` 
Is the distribution function continuous? If so, give its probability density function?


Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function

F(x) = `{{:(0",",  "for"  x ≤ 0),(x/2",",  "for"  0 ≤ x < 1),(1/2",",  "for" ≤ x < 2),(x/4",",  "for"  2 ≤ x < 4),(1",",  "for"  x ≥ 4):}` 
What is the probability that a person will have to wait (i) more than 3 minutes, (ii) less than 3 minutes and (iii) between 1 and 3 minutes?


Explain what are the types of random variable?


Explain the distribution function of a random variable


What are the properties of continuous random variable?


Choose the correct alternative:

A variable that can assume any possible value between two points is called


Choose the correct alternative:

If c is a constant in a continuous probability distribution, then p(x = c) is always equal to


Choose the correct alternative: 

If the random variable takes negative values, then the negative values will have


Choose the correct alternative: 

The probability function of a random variable is defined as

X = x – 1 – 2 0 1 2
P(x) k 2k 3k 4k 5k

Then k is equal to


Choose the correct alternative: 

A discrete probability function p(x) is always


Choose the correct alternative: 

The height of persons in a country is a random variable of the type


The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)


The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",",  x = 1),(3k",",  x = 3),(4k",", x = 5),(0",",  "otherwise"):}`
where k is some constant. Find P(X > 2) 


The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",",  0 ≤ x ≤ 1),(0",",  "otherwise"):}`
where a and b are some constants. Find Var(X)


Consider a random variable X with p.d.f.
f(x) = `{(3x^2",",  "if"  0 < x < 1),(0",",  "otherwise"):}`
Find E(X) and V(3X – 2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×