Advertisements
Advertisements
Question
Choose the correct alternative:
Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are
Options
i + 2n, i = 0, 1, 2 …, n
2i – n, i = 0, 1, 2 …, n
n – i, i = 0, 1, 2 …, n
2i + 2n, i = 0, 1, 2 …, n
Solution
2i – n, i = 0, 1, 2 …, n
APPEARS IN
RELATED QUESTIONS
Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that we win ₹ 15 for each red ball selected and we lose ₹ 10 for each black ball selected. X denotes the winning amount, then find the values of X and number of points in its inverse images
The discrete random variable X has the following probability function.
P(X = x) = `{{:("k"x, x = 2"," 4"," 6),("k"(x - 2), x = 8),(0, "otherwise"):}`
where k is a constant. Show that k = `1/18`
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find k
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
If P(X ≤ x) > `1/2`, then find the minimum value of x.
The distribution of a continuous random variable X in range (– 3, 3) is given by p.d.f.
f(x) = `{{:(1/16(3 + x)^2",", - 3 ≤ x ≤ - 1),(1/16(6 - 2x^2)",", - 1 ≤ x ≤ 1),(1/16(3 - x)^2",", 1 ≤ x ≤ 3):}`
Verify that the area under the curve is unity.
The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as
f(x) = `{{:("Ae"^((-x)/5)",", "for" x ≥ 0),(0",", "otherwise"):}`
Find the value of A that makes f(x) a p.d.f.
Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function
F(x) = `{{:(0",", "for" x ≤ 0),(x/2",", "for" 0 ≤ x < 1),(1/2",", "for" ≤ x < 2),(x/4",", "for" 2 ≤ x < 4),(1",", "for" x ≥ 4):}`
Is the distribution function continuous? If so, give its probability density function?
Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function
F(x) = `{{:(0",", "for" x ≤ 0),(x/2",", "for" 0 ≤ x < 1),(1/2",", "for" ≤ x < 2),(x/4",", "for" 2 ≤ x < 4),(1",", "for" x ≥ 4):}`
What is the probability that a person will have to wait (i) more than 3 minutes, (ii) less than 3 minutes and (iii) between 1 and 3 minutes?
Explain what are the types of random variable?
Explain the terms probability Mass function
Explain the terms probability density function
What are the properties of continuous random variable?
Choose the correct alternative:
A variable that can assume any possible value between two points is called
Choose the correct alternative:
A formula or equation used to represent the probability distribution of a continuous random variable is called
Choose the correct alternative:
A set of numerical values assigned to a sample space is called
Choose the correct alternative:
The probability function of a random variable is defined as
X = x | – 1 | – 2 | 0 | 1 | 2 |
P(x) | k | 2k | 3k | 4k | 5k |
Then k is equal to
Choose the correct alternative:
The probability density function p(x) cannot exceed
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(X < 0)