Advertisements
Advertisements
Question
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
If P(X ≤ x) > `1/2`, then find the minimum value of x.
Solution
We want the minimum value of x for which P(X ≥ x) > `1/2`
Now P(X ≤ 0) = `0 < 1/2`
P(X ≤ 1) = P(x = 0) + P(X = 1) = 0 + k
= `1/10 < 1/2`
P( X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)
= 0 + k + 2k = 3k
= `3/10 = 1/2`
P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 2) + P(X = 3)
= 0 + k + 2k + 2k = 5k
= `5/10 = 1/2`
P(X ≤ 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 2) + P(X = 3) + P(X = 4)
= 0 + k + 2k + 2k + 3k = 8k
= `8/10 > 1/2`
This Shows that the minimum value of X for which P(X ≤ x) > `1/2` is 4
APPEARS IN
RELATED QUESTIONS
A six sided die is marked ‘2’ on one face, ‘3’ on two of its faces, and ‘4’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the values of the random variable and number of points in its inverse images
Let X be a discrete random variable with the following p.m.f
`"P"(x) = {{:(0.3, "for" x = 3),(0.2, "for" x = 5),(0.3, "for" x = 8),(0.2, "for" x = 10),(0, "otherwise"):}`
Find and plot the c.d.f. of X.
The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as
f(x) = `{{:("Ae"^((-x)/5)",", "for" x ≥ 0),(0",", "otherwise"):}`
What is the probability that the number of minutes that person will talk over the phone is (i) more than 10 minutes, (ii) less than 5 minutes and (iii) between 5 and 10 minutes
What do you understand by continuous random variable?
Choose the correct alternative:
If the random variable takes negative values, then the negative values will have
Choose the correct alternative:
A variable which can assume finite or countably infinite number of values is known as
Choose the correct alternative:
In a discrete probability distribution, the sum of all the probabilities is always equal to
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)
Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",", "if" x < 0),(x/8",", "if" 0 ≤ x ≤ 1),(1/4 + x/8",", "if" 1 ≤ x ≤ 2),(3/4 + x/12",", "if" 2 ≤ x < 3),(1",", "for" 3 ≤ x):}`
Is X a discrete random variable? Justify your answer
The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",", x = 1),(3k",", x = 3),(4k",", x = 5),(0",", "otherwise"):}`
where k is some constant. Find k