Advertisements
Advertisements
Question
What do you understand by continuous random variable?
Solution
A random variable X which can take on any value (integral as well as fraction) in the interval is called continuous random variable.
APPEARS IN
RELATED QUESTIONS
Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable X and number of points in its inverse images
In a pack of 52 playing cards, two cards are drawn at random simultaneously. If the number of black cards drawn is a random variable, find the values of the random variable and number of points in its inverse images
An urn contains 5 mangoes and 4 apples. Three fruits are taken at random. If the number of apples taken is a random variable, then find the values of the random variable and number of points in its inverse images
Construct cumulative distribution function for the given probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | 0.3 | 0. | 0.4 | 0.1 |
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Evaluate p(x < 6), p(x ≥ 6) and p(0 < x < 5)
The distribution of a continuous random variable X in range (– 3, 3) is given by p.d.f.
f(x) = `{{:(1/16(3 + x)^2",", - 3 ≤ x ≤ - 1),(1/16(6 - 2x^2)",", - 1 ≤ x ≤ 1),(1/16(3 - x)^2",", 1 ≤ x ≤ 3):}`
Verify that the area under the curve is unity.
Describe what is meant by a random variable
Choose the correct alternative:
If c is a constant in a continuous probability distribution, then p(x = c) is always equal to
Choose the correct alternative:
The probability function of a random variable is defined as
X = x | – 1 | – 2 | 0 | 1 | 2 |
P(x) | k | 2k | 3k | 4k | 5k |
Then k is equal to
Choose the correct alternative:
The probability density function p(x) cannot exceed