English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

An urn contains 5 mangoes and 4 apples. Three fruits are taken at random. If the number of apples taken is a random variable, then find the values of the random variable and number of points in - Mathematics

Advertisements
Advertisements

Question

An urn contains 5 mangoes and 4 apples. Three fruits are taken at random. If the number of apples taken is a random variable, then find the values of the random variable and number of points in its inverse images

Chart
Sum

Solution

Number of mangoes = 5

Number of Apples = 4

Total number of fruits = 9

Let ‘X’ be the random variable that denotes the number of apples taken, then it takes the values 0, 1, 2, 3

X(MMM) = 0

X(AMM or MAM or MMA) = 1

X(AAM or AMA or MAA) = 2

X(AAA) = 3

Value of the random variable 0 1 2 3 Total
Number of elements in inverse image 10 40 30 4 84
shaalaa.com
Random Variable
  Is there an error in this question or solution?
Chapter 11: Probability Distributions - Exercise 11.1 [Page 184]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 11 Probability Distributions
Exercise 11.1 | Q 3 | Page 184

RELATED QUESTIONS

Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable X and number of points in its inverse images


In a pack of 52 playing cards, two cards are drawn at random simultaneously. If the number of black cards drawn is a random variable, find the values of the random variable and number of points in its inverse images


Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that we win ₹ 15 for each red ball selected and we lose ₹ 10 for each black ball selected. X denotes the winning amount, then find the values of X and number of points in its inverse images


The discrete random variable X has the probability function.

Value
of X = x
0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Find k


The discrete random variable X has the probability function.

Value
of X = x
0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Evaluate p(x < 6), p(x ≥ 6) and p(0 < x < 5)


The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as 
f(x) = `{{:("Ae"^((-x)/5)",",  "for"  x ≥ 0),(0",",  "otherwise"):}`
Find the value of A that makes f(x) a p.d.f.


The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as 
f(x) = `{{:("Ae"^((-x)/5)",",  "for"  x ≥ 0),(0",",  "otherwise"):}`
What is the probability that the number of minutes that person will talk over the phone is (i) more than 10 minutes, (ii) less than 5 minutes and (iii) between 5 and 10 minutes


Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function

F(x) = `{{:(0",",  "for"  x ≤ 0),(x/2",",  "for"  0 ≤ x < 1),(1/2",",  "for" ≤ x < 2),(x/4",",  "for"  2 ≤ x < 4),(1",",  "for"  x ≥ 4):}` 
Is the distribution function continuous? If so, give its probability density function?


Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function

F(x) = `{{:(0",",  "for"  x ≤ 0),(x/2",",  "for"  0 ≤ x < 1),(1/2",",  "for" ≤ x < 2),(x/4",",  "for"  2 ≤ x < 4),(1",",  "for"  x ≥ 4):}` 
What is the probability that a person will have to wait (i) more than 3 minutes, (ii) less than 3 minutes and (iii) between 1 and 3 minutes?


Distinguish between discrete and continuous random variables.


Explain the distribution function of a random variable


Choose the correct alternative: 

If the random variable takes negative values, then the negative values will have


Choose the correct alternative: 

A set of numerical values assigned to a sample space is called


Choose the correct alternative: 

A variable which can assume finite or countably infinite number of values is known as


Choose the correct alternative: 

The probability function of a random variable is defined as

X = x – 1 – 2 0 1 2
P(x) k 2k 3k 4k 5k

Then k is equal to


The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)


The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",",  x = 1),(3k",",  x = 3),(4k",", x = 5),(0",",  "otherwise"):}`
where k is some constant. Find P(X > 2) 


Consider a random variable X with p.d.f.
f(x) = `{(3x^2",",  "if"  0 < x < 1),(0",",  "otherwise"):}`
Find E(X) and V(3X – 2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×