English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 12

Explain the distribution function of a random variable - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Explain the distribution function of a random variable

Sum

Solution

The discrete cumulative distribution function or distribution function of a real-valued discrete random variable X takes the countable number of points x1, x2, …. with corresponding probabilities p(x1), p(x2),… and then the cumulative distribution function is defined by
Fx(x) = P(X ≤ x), for all x ∈ R

i.e. Fx (x) = `sum_(x ≤ x) "P"(x_"i")`

shaalaa.com
Random Variable
  Is there an error in this question or solution?
Chapter 6: Random Variable and Mathematical expectation - Exercise 6.1 [Page 133]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 12 TN Board
Chapter 6 Random Variable and Mathematical expectation
Exercise 6.1 | Q 17 | Page 133

RELATED QUESTIONS

Construct cumulative distribution function for the given probability distribution.

X 0 1 2 3
P(X = x) 0.3 0. 0.4 0.1

The discrete random variable X has the probability function.

Value
of X = x
0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

If P(X ≤ x) > `1/2`, then find the minimum value of x.


The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as 
f(x) = `{{:("Ae"^((-x)/5)",",  "for"  x ≥ 0),(0",",  "otherwise"):}`
Find the value of A that makes f(x) a p.d.f.


Explain the terms probability distribution function


Choose the correct alternative: 

A set of numerical values assigned to a sample space is called


Choose the correct alternative: 

A variable which can assume finite or countably infinite number of values is known as


The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)


Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",",  "if"  x  < 0),(x/8",",  "if"  0 ≤ x ≤ 1),(1/4 + x/8",",  "if"  1 ≤ x ≤ 2),(3/4 + x/12",",  "if"  2 ≤ x < 3),(1",",  "for"  3 ≤ x):}`
Compute: (i) P(1 ≤ X ≤ 2) and (ii) P(X = 3)


The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",",  x = 1),(3k",",  x = 3),(4k",", x = 5),(0",",  "otherwise"):}`
where k is some constant. Find k 


The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",",  0 ≤ x ≤ 1),(0",",  "otherwise"):}`
where a and b are some constants. Find a and b if E(X) = `3/5`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×