Advertisements
Advertisements
Question
The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
where a and b are some constants. Find a and b if E(X) = `3/5`
Solution
Let X be due continuous variable of density function
`int_(-oo)^oo "f"(x) "d"x` = 1
Here `int_0^1 ("a" + "b" x^2) "d"x` = 1
`["a"x + ("b"x^3)/3]` = 1
`["a"(1) + ("b"(1)^3)/3] - ["a"(0) + ("b"(0))/3]` = 1
`"a" + "b"/3` = 1
⇒ 3a + b = 3 → (1)
Given that E(x) = `3/5`
`int_0^1 x "f"(x) "d"x = 1 = 3/5`
`int_0^1 x("a" + "b"x^2) "d"x = 3/5`
`["a" x^2/2 + "b" x^4/4]_0^1 = 3/5`
`["a"(1/2) + "b"(1/4)] - [0]] = 3/5`
`"a"/2 + "b"/4 = 3/5`
`(2"a"+ "b")/4 = 3/5`
⇒ `2"a" + "b" = 12/5` → (2)
Equation (1) - Equation (2)
⇒ 3a + b = 3
2a + b = 12/5
a = 3 - 12/5
a = `(15 - 12)/5`
∴ a = `3/5`
Substitute the value of a = `3/5` in equation
`3(3/5) + "b"` = 3
`9/5 + "b"` = 3
⇒ b = `3 - 9/5`
b = `(15 - 9)/5`
∴ b = `6/5`
APPEARS IN
RELATED QUESTIONS
An urn contains 5 mangoes and 4 apples. Three fruits are taken at random. If the number of apples taken is a random variable, then find the values of the random variable and number of points in its inverse images
Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that we win ₹ 15 for each red ball selected and we lose ₹ 10 for each black ball selected. X denotes the winning amount, then find the values of X and number of points in its inverse images
Let X be a discrete random variable with the following p.m.f
`"P"(x) = {{:(0.3, "for" x = 3),(0.2, "for" x = 5),(0.3, "for" x = 8),(0.2, "for" x = 10),(0, "otherwise"):}`
Find and plot the c.d.f. of X.
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find k
A continuous random variable X has the following distribution function
F(x) = `{{:(0",", "if" x ≤ 1),("k"(x - 1)^4",", "if" 1 < x ≤ 3),(1",", "if" x > 3):}`
Find k
The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as
f(x) = `{{:("Ae"^((-x)/5)",", "for" x ≥ 0),(0",", "otherwise"):}`
What is the probability that the number of minutes that person will talk over the phone is (i) more than 10 minutes, (ii) less than 5 minutes and (iii) between 5 and 10 minutes
Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function
F(x) = `{{:(0",", "for" x ≤ 0),(x/2",", "for" 0 ≤ x < 1),(1/2",", "for" ≤ x < 2),(x/4",", "for" 2 ≤ x < 4),(1",", "for" x ≥ 4):}`
Is the distribution function continuous? If so, give its probability density function?
What are the properties of continuous random variable?
Choose the correct alternative:
A formula or equation used to represent the probability distribution of a continuous random variable is called
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)