Advertisements
Advertisements
Question
A continuous random variable X has the following distribution function
F(x) = `{{:(0",", "if" x ≤ 1),("k"(x - 1)^4",", "if" 1 < x ≤ 3),(1",", "if" x > 3):}`
Find k
Solution
Here F(3) – F(1) = 1
k(3 – 1)4 – 0 = 1
k(2)4 = 1
k(16) = 1
k = `1/16`
APPEARS IN
RELATED QUESTIONS
A six sided die is marked ‘2’ on one face, ‘3’ on two of its faces, and ‘4’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the values of the random variable and number of points in its inverse images
The distribution of a continuous random variable X in range (– 3, 3) is given by p.d.f.
f(x) = `{{:(1/16(3 + x)^2",", - 3 ≤ x ≤ - 1),(1/16(6 - 2x^2)",", - 1 ≤ x ≤ 1),(1/16(3 - x)^2",", 1 ≤ x ≤ 3):}`
Verify that the area under the curve is unity.
Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function
F(x) = `{{:(0",", "for" x ≤ 0),(x/2",", "for" 0 ≤ x < 1),(1/2",", "for" ≤ x < 2),(x/4",", "for" 2 ≤ x < 4),(1",", "for" x ≥ 4):}`
What is the probability that a person will have to wait (i) more than 3 minutes, (ii) less than 3 minutes and (iii) between 1 and 3 minutes?
What do you understand by continuous random variable?
Explain the terms probability Mass function
What are the properties of continuous random variable?
Choose the correct alternative:
A variable that can assume any possible value between two points is called
Choose the correct alternative:
A set of numerical values assigned to a sample space is called
The p.d.f. of X is defined as
f(x) = `{{:("k"",", "for" 0 < x ≤ 4),(0",", "otherwise"):}`
Find the value of k and also find P(2 ≤ X ≤ 4)
The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
where a and b are some constants. Find Var(X)