Advertisements
Advertisements
Question
The p.d.f. of X is defined as
f(x) = `{{:("k"",", "for" 0 < x ≤ 4),(0",", "otherwise"):}`
Find the value of k and also find P(2 ≤ X ≤ 4)
Solution
Let X and a random variable if a Probability density function
`int_(-oo)^oo "f"(x) "d"x` = 1
Here `int_0^4 "f"(x) "d"x` = 1
`int_0^4 "k" "d"x` = 1
⇒ `"k"[x]_0^4` = 1
`"k"[4 - 0]` = 1
⇒ 4k = 1
∴ k = `1/4`
P(2 ≤ x ≤ 4) = `int_2^4 "f"(x) "d"`
= `int_2^4 "kd"x`
= `int_2^4 1/4 "d"x`
= `1/4 int_2^4 "d"x`
= `1/4 [x]_2^4`
= `1/4 [4 - 2]`
= `1/4 [2]`
= `1/2`
APPEARS IN
RELATED QUESTIONS
Construct cumulative distribution function for the given probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | 0.3 | 0. | 0.4 | 0.1 |
A continuous random variable X has the following distribution function
F(x) = `{{:(0",", "if" x ≤ 1),("k"(x - 1)^4",", "if" 1 < x ≤ 3),(1",", "if" x > 3):}`
Find the Probability density function
The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as
f(x) = `{{:("Ae"^((-x)/5)",", "for" x ≥ 0),(0",", "otherwise"):}`
Find the value of A that makes f(x) a p.d.f.
Distinguish between discrete and continuous random variables.
What are the properties of continuous random variable?
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(X ≤ 0)
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(X < 0)
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(0 ≤ X ≤ 10)
The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
where a and b are some constants. Find Var(X)