Advertisements
Advertisements
प्रश्न
An urn contains 5 mangoes and 4 apples. Three fruits are taken at random. If the number of apples taken is a random variable, then find the values of the random variable and number of points in its inverse images
उत्तर
Number of mangoes = 5
Number of Apples = 4
Total number of fruits = 9
Let ‘X’ be the random variable that denotes the number of apples taken, then it takes the values 0, 1, 2, 3
X(MMM) = 0
X(AMM or MAM or MMA) = 1
X(AAM or AMA or MAA) = 2
X(AAA) = 3
Value of the random variable | 0 | 1 | 2 | 3 | Total |
Number of elements in inverse image | 10 | 40 | 30 | 4 | 84 |
APPEARS IN
संबंधित प्रश्न
Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that we win ₹ 15 for each red ball selected and we lose ₹ 10 for each black ball selected. X denotes the winning amount, then find the values of X and number of points in its inverse images
A six sided die is marked ‘2’ on one face, ‘3’ on two of its faces, and ‘4’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the values of the random variable and number of points in its inverse images
Construct cumulative distribution function for the given probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | 0.3 | 0. | 0.4 | 0.1 |
Let X be a discrete random variable with the following p.m.f
`"P"(x) = {{:(0.3, "for" x = 3),(0.2, "for" x = 5),(0.3, "for" x = 8),(0.2, "for" x = 10),(0, "otherwise"):}`
Find and plot the c.d.f. of X.
The discrete random variable X has the following probability function.
P(X = x) = `{{:("k"x, x = 2"," 4"," 6),("k"(x - 2), x = 8),(0, "otherwise"):}`
where k is a constant. Show that k = `1/18`
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Evaluate p(x < 6), p(x ≥ 6) and p(0 < x < 5)
The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as
f(x) = `{{:("Ae"^((-x)/5)",", "for" x ≥ 0),(0",", "otherwise"):}`
Find the value of A that makes f(x) a p.d.f.
Define dicrete random Variable
Explain the terms probability Mass function
What are the properties of continuous random variable?
Choose the correct alternative:
A variable that can assume any possible value between two points is called
Choose the correct alternative:
A formula or equation used to represent the probability distribution of a continuous random variable is called
Choose the correct alternative:
If c is a constant, then E(c) is
Choose the correct alternative:
If the random variable takes negative values, then the negative values will have
Choose the correct alternative:
A set of numerical values assigned to a sample space is called
Choose the correct alternative:
The probability function of a random variable is defined as
X = x | – 1 | – 2 | 0 | 1 | 2 |
P(x) | k | 2k | 3k | 4k | 5k |
Then k is equal to
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(X < 0)
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)
Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",", "if" x < 0),(x/8",", "if" 0 ≤ x ≤ 1),(1/4 + x/8",", "if" 1 ≤ x ≤ 2),(3/4 + x/12",", "if" 2 ≤ x < 3),(1",", "for" 3 ≤ x):}`
Compute: (i) P(1 ≤ X ≤ 2) and (ii) P(X = 3)
Consider a random variable X with p.d.f.
f(x) = `{(3x^2",", "if" 0 < x < 1),(0",", "otherwise"):}`
Find E(X) and V(3X – 2)