Advertisements
Advertisements
प्रश्न
Construct cumulative distribution function for the given probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | 0.3 | 0. | 0.4 | 0.1 |
उत्तर
F(0) = P(x ≤ 0)
= p(0) = 0.3
F(1) = P(x ≤ 1)
= p(0) + p(1)
= 0.3 + 0.2
= 0.5
F(2) = P(x ≤ 2)
= P(0) + P(1) + P(2)
= 0.3 + 0.2 + 0.4
= 0.9
F(3) = P(x ≤ 3)
= P(0) + P(2) + P(3) + P(4)
= 0.3 + 0.2 + 0.4 + 0.1
= 1
APPEARS IN
संबंधित प्रश्न
Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that we win ₹ 15 for each red ball selected and we lose ₹ 10 for each black ball selected. X denotes the winning amount, then find the values of X and number of points in its inverse images
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find k
A continuous random variable X has the following distribution function
F(x) = `{{:(0",", "if" x ≤ 1),("k"(x - 1)^4",", "if" 1 < x ≤ 3),(1",", "if" x > 3):}`
Find the Probability density function
What do you understand by continuous random variable?
Choose the correct alternative:
A variable that can assume any possible value between two points is called
Choose the correct alternative:
A formula or equation used to represent the probability distribution of a continuous random variable is called
Choose the correct alternative:
Which one is not an example of random experiment?
Choose the correct alternative:
The height of persons in a country is a random variable of the type
Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",", "if" x < 0),(x/8",", "if" 0 ≤ x ≤ 1),(1/4 + x/8",", "if" 1 ≤ x ≤ 2),(3/4 + x/12",", "if" 2 ≤ x < 3),(1",", "for" 3 ≤ x):}`
Compute: (i) P(1 ≤ X ≤ 2) and (ii) P(X = 3)
The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
where a and b are some constants. Find Var(X)