Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
A formula or equation used to represent the probability distribution of a continuous random variable is called
विकल्प
Probability distribution
Distribution function
Probability density function
Mathematical expectation
उत्तर
Probability density function
APPEARS IN
संबंधित प्रश्न
Choose the correct alternative:
Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are
Let X be a discrete random variable with the following p.m.f
`"P"(x) = {{:(0.3, "for" x = 3),(0.2, "for" x = 5),(0.3, "for" x = 8),(0.2, "for" x = 10),(0, "otherwise"):}`
Find and plot the c.d.f. of X.
The discrete random variable X has the probability function
X | 1 | 2 | 3 | 4 |
P(X = x) | k | 2k | 3k | 4k |
Show that k = 0 1
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Evaluate p(x < 6), p(x ≥ 6) and p(0 < x < 5)
Define dicrete random Variable
What are the properties of continuous random variable?
Choose the correct alternative:
Which one is not an example of random experiment?
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(X < 0)
The p.d.f. of X is defined as
f(x) = `{{:("k"",", "for" 0 < x ≤ 4),(0",", "otherwise"):}`
Find the value of k and also find P(2 ≤ X ≤ 4)
The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",", x = 1),(3k",", x = 3),(4k",", x = 5),(0",", "otherwise"):}`
where k is some constant. Find P(X > 2)