Advertisements
Advertisements
प्रश्न
The discrete random variable X has the probability function
X | 1 | 2 | 3 | 4 |
P(X = x) | k | 2k | 3k | 4k |
Show that k = 0 1
उत्तर
P(x = 1) = k
p(x = 2) = 2k
p(x = 3) = 3k
P(x = 4) = 4k
Since P(X = x) is a probability Mass function
`sum_(x = 1)^4` P(X = x) = 1
`sum_("i" = 1)^oo` P(xi) = 1
p(x = 1) + P(x = 2) + P(x = 3) + P(x = 4) = 1
P(x = 1) + P(x = = 2) + P(x = 3) + P(x = 4) = 1
k + 2k + 3k + 4k = 1
10k = 1
k = `1/10`
∴ k = 0.1
APPEARS IN
संबंधित प्रश्न
Explain the distribution function of a random variable
Choose the correct alternative:
A variable that can assume any possible value between two points is called
Choose the correct alternative:
A formula or equation used to represent the probability distribution of a continuous random variable is called
Choose the correct alternative:
If c is a constant in a continuous probability distribution, then p(x = c) is always equal to
Choose the correct alternative:
A variable which can assume finite or countably infinite number of values is known as
Choose the correct alternative:
A discrete probability function p(x) is always
Choose the correct alternative:
The height of persons in a country is a random variable of the type
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)
The p.d.f. of X is defined as
f(x) = `{{:("k"",", "for" 0 < x ≤ 4),(0",", "otherwise"):}`
Find the value of k and also find P(2 ≤ X ≤ 4)
The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
where a and b are some constants. Find a and b if E(X) = `3/5`