हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that we win ₹ 15 for each red ball selected and we lose ₹ 10 for each black ball selected. X denotes the - Mathematics

Advertisements
Advertisements

प्रश्न

Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that we win ₹ 15 for each red ball selected and we lose ₹ 10 for each black ball selected. X denotes the winning amount, then find the values of X and number of points in its inverse images

सारिणी
योग

उत्तर

Number of red balls = 6

Number of black balls = 8

‘X’ is the random variable denotes the winning amount.

∴ The values of ‘X’ are 0, 15, 30

i.e., X(BB) = 0

X(RB) = 15 + 0 = 15

X(RR) = 15 + 15 = 30

Value of X 0 15 30 Total
Number of elements in inverse images 1 2 1 4
  BB RB, BR RR  
shaalaa.com
Random Variable
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Probability Distributions - Exercise 11.1 [पृष्ठ १८४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 11 Probability Distributions
Exercise 11.1 | Q 4 | पृष्ठ १८४

संबंधित प्रश्न

Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable X and number of points in its inverse images


Construct cumulative distribution function for the given probability distribution.

X 0 1 2 3
P(X = x) 0.3 0. 0.4 0.1

Let X be a discrete random variable with the following p.m.f
`"P"(x) = {{:(0.3,  "for"  x = 3),(0.2,  "for"  x = 5),(0.3,  "for"  x = 8),(0.2,  "for"  x = 10),(0,  "otherwise"):}`
Find and plot the c.d.f. of X.


The discrete random variable X has the following probability function.
P(X = x) = `{{:("k"x,  x = 2","  4","  6),("k"(x - 2),  x = 8),(0,  "otherwise"):}`
where k is a constant. Show that k = `1/18`


The discrete random variable X has the probability function.

Value
of X = x
0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Find k


The discrete random variable X has the probability function.

Value
of X = x
0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

If P(X ≤ x) > `1/2`, then find the minimum value of x.


A continuous random variable X has the following distribution function
F(x) = `{{:(0",",  "if"  x ≤ 1),("k"(x - 1)^4",",  "if"  1 < x ≤ 3),(1",",  "if"  x > 3):}`
Find the Probability density function


Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function

F(x) = `{{:(0",",  "for"  x ≤ 0),(x/2",",  "for"  0 ≤ x < 1),(1/2",",  "for" ≤ x < 2),(x/4",",  "for"  2 ≤ x < 4),(1",",  "for"  x ≥ 4):}` 
Is the distribution function continuous? If so, give its probability density function?


Define random variable


Explain what are the types of random variable?


Distinguish between discrete and continuous random variables.


What are the properties of discrete random variable


Choose the correct alternative: 

If the random variable takes negative values, then the negative values will have


Choose the correct alternative: 

If we have f(x) = 2x, 0 ≤ x ≤ 1, then f(x) is a


Choose the correct alternative: 

Which one is not an example of random experiment?


Choose the correct alternative: 

A variable which can assume finite or countably infinite number of values is known as


Choose the correct alternative: 

The probability function of a random variable is defined as

X = x – 1 – 2 0 1 2
P(x) k 2k 3k 4k 5k

Then k is equal to


The probability function of a random variable X is given by
p(x) = `{{:(1/4",",  "for"  x = - 2),(1/4",",  "for"  x = 0),(1/2",",  "for"  x = 10),(0",",  "elsewhere"):}`
Evaluate the following probabilities
P(X < 0)


The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",",  x = 1),(3k",",  x = 3),(4k",", x = 5),(0",",  "otherwise"):}`
where k is some constant. Find k 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×