Advertisements
Advertisements
Question
The discrete random variable X has the following probability function.
P(X = x) = `{{:("k"x, x = 2"," 4"," 6),("k"(x - 2), x = 8),(0, "otherwise"):}`
where k is a constant. Show that k = `1/18`
Solution
From the data
P(x = 2) = kx
= 2k
P(x = 4) = kx
= 4k
P(x = 6) = kx
= 6k
P(x = 8) = k(x – 2)
= k(8 – 2) = 6k
Since P(X = x) is a probability mass function
`sum_(x = 2)^8` P(X = x) = 1
`sum_("i" = 2)^oo` P(xi) = 1
i.e P(x = 2) + P(x = 4) + P(x = 6) + P(x = 8) = 1
2k + 4k + 6k + 6k = 1
18k = 1
∴ k = `1/18`
APPEARS IN
RELATED QUESTIONS
Construct cumulative distribution function for the given probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | 0.3 | 0. | 0.4 | 0.1 |
The discrete random variable X has the probability function.
Value of X = x |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find k
A continuous random variable X has the following distribution function
F(x) = `{{:(0",", "if" x ≤ 1),("k"(x - 1)^4",", "if" 1 < x ≤ 3),(1",", "if" x > 3):}`
Find k
The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as
f(x) = `{{:("Ae"^((-x)/5)",", "for" x ≥ 0),(0",", "otherwise"):}`
Find the value of A that makes f(x) a p.d.f.
Explain what are the types of random variable?
Explain the terms probability distribution function
Choose the correct alternative:
A variable which can assume finite or countably infinite number of values is known as
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(X ≤ 0)
The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",", x = 1),(3k",", x = 3),(4k",", x = 5),(0",", "otherwise"):}`
where k is some constant. Find k
The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
where a and b are some constants. Find a and b if E(X) = `3/5`