Advertisements
Advertisements
प्रश्न
Explain the terms probability density function
उत्तर
The probability that a random variable X takes a value in the interval [t1, t2] (open or closed) is given by the integral of a function called the probability density function fx(x):
P(t1 ≤ X ≤ t2) = `int_("t"_1)^("t"_2) "f"_x (x) "d"x`
APPEARS IN
संबंधित प्रश्न
Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable X and number of points in its inverse images
The distribution of a continuous random variable X in range (– 3, 3) is given by p.d.f.
f(x) = `{{:(1/16(3 + x)^2",", - 3 ≤ x ≤ - 1),(1/16(6 - 2x^2)",", - 1 ≤ x ≤ 1),(1/16(3 - x)^2",", 1 ≤ x ≤ 3):}`
Verify that the area under the curve is unity.
Distinguish between discrete and continuous random variables.
Explain the distribution function of a random variable
Explain the terms probability distribution function
What are the properties of discrete random variable
Choose the correct alternative:
Which one is not an example of random experiment?
Choose the correct alternative:
The probability density function p(x) cannot exceed
The probability density function of a continuous random variable X is
f(x) = `{{:("a" + "b"x^2",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
where a and b are some constants. Find Var(X)
Consider a random variable X with p.d.f.
f(x) = `{(3x^2",", "if" 0 < x < 1),(0",", "otherwise"):}`
Find E(X) and V(3X – 2)