Advertisements
Advertisements
प्रश्न
Explain the terms probability Mass function
उत्तर
If X is a discrete random variable with distinct values x1, x2, …. xn, …, then the function, denoted by Px(x) and defined by
This is defined to be the probability mass function or discrete probability function of X.
APPEARS IN
संबंधित प्रश्न
Choose the correct alternative:
Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are
Let X be a discrete random variable with the following p.m.f
`"P"(x) = {{:(0.3, "for" x = 3),(0.2, "for" x = 5),(0.3, "for" x = 8),(0.2, "for" x = 10),(0, "otherwise"):}`
Find and plot the c.d.f. of X.
The discrete random variable X has the probability function
X | 1 | 2 | 3 | 4 |
P(X = x) | k | 2k | 3k | 4k |
Show that k = 0 1
Describe what is meant by a random variable
Distinguish between discrete and continuous random variables.
Choose the correct alternative:
A variable that can assume any possible value between two points is called
Choose the correct alternative:
The height of persons in a country is a random variable of the type
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(0 ≤ X ≤ 10)
Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",", "if" x < 0),(x/8",", "if" 0 ≤ x ≤ 1),(1/4 + x/8",", "if" 1 ≤ x ≤ 2),(3/4 + x/12",", "if" 2 ≤ x < 3),(1",", "for" 3 ≤ x):}`
Compute: (i) P(1 ≤ X ≤ 2) and (ii) P(X = 3)
The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",", x = 1),(3k",", x = 3),(4k",", x = 5),(0",", "otherwise"):}`
where k is some constant. Find P(X > 2)