Advertisements
Advertisements
प्रश्न
The factors of x3 − 1 + y3 + 3xy are
विकल्प
(x − 1 + y) (x2 + 1 + y2 + x + y − xy)
(x + y + 1) (x2 + y2 + 1 −xy − x − y)
(x − 1 + y) (x2 − 1 − y2 + x + y + xy)
3(x + y −1) (x2 + y2 − 1)
उत्तर
The given expression to be factorized is x3 − 1 + y3 + 3xy
This can be written in the form
x3 − 1 + y3 + 3xy = `(x)^2 + (-1)^3 + (y)^3 -3 .(x).(-1).(y)`
Recall the formula `a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)`
Using the above formula, we have
x3 − 1 + y3 + 3xy
` = {x+(-1)+ y}{(x)^2 + (-1)^2 + (y)^2 - (x).(-1) - (-1). (y) - (y).(x)}`
` = (x-1 + y)(x^2 + 1 + y^2 + x+ y -xy)`
So, the correct choice is (a).
APPEARS IN
संबंधित प्रश्न
Factorize: `a^2 x^2 + (ax^2 + 1)x + a`
Factorize a2 + 4b2 - 4ab - 4c2
Factorize xy9 - yx9
Factorize the following expressions:
54x6y + 2x3y4
Factorize the following expressions:
x4y4 - xy
If x3 − 3x2 + 3x − 7 = (x + 1) (ax2 + bx + c), then a + b + c =
Evaluate: (3x - 1)(4x3 - 2x2 + 6x - 3)
Divide: 5x2 - 3x by x
Write the variables, constant and terms of the following expression
b + 2
In a polynomial, the exponents of the variables are always ______.