Advertisements
Advertisements
Question
The factors of x3 − 1 + y3 + 3xy are
Options
(x − 1 + y) (x2 + 1 + y2 + x + y − xy)
(x + y + 1) (x2 + y2 + 1 −xy − x − y)
(x − 1 + y) (x2 − 1 − y2 + x + y + xy)
3(x + y −1) (x2 + y2 − 1)
Solution
The given expression to be factorized is x3 − 1 + y3 + 3xy
This can be written in the form
x3 − 1 + y3 + 3xy = `(x)^2 + (-1)^3 + (y)^3 -3 .(x).(-1).(y)`
Recall the formula `a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)`
Using the above formula, we have
x3 − 1 + y3 + 3xy
` = {x+(-1)+ y}{(x)^2 + (-1)^2 + (y)^2 - (x).(-1) - (-1). (y) - (y).(x)}`
` = (x-1 + y)(x^2 + 1 + y^2 + x+ y -xy)`
So, the correct choice is (a).
APPEARS IN
RELATED QUESTIONS
Factorize 4( x - y)2 -12( x - y)( x + y ) + 9(x + y )2
Factorize `x^2 + 6sqrt2x + 10`
Factorize `2x^2 + 3sqrt5x + 5`
Factorize the following expressions
8x3 y3 + 27a3
Factorize the following expressions:
1029 – 3x3
Factorize the following expressions:
x3y3 + 1
Factorize the following expressions:
`a^3 - 1/a^3 - 2a + 2/a`
The expression x4 + 4 can be factorized as
Separate the constants and variables from the following :
`-7,7+"x",7"x"+"yz",sqrt5,sqrt("xy"),(3"yz")/8,4.5"y"-3"x",`
8 −5, 8 − 5x, 8x −5y × p and 3y2z ÷ 4x
Divide: 12a2 + ax - 6x2 by 3a - 2x