Advertisements
Advertisements
प्रश्न
The following data pertains to the marks in subjects A and B in a certain examination. Mean marks in A = 39.5, Mean marks in B = 47.5 standard deviation of marks in A = 10.8 and Standard deviation of marks in B = 16.8. coefficient of correlation between marks in A and marks in B is 0.42. Give the estimate of marks in B for the candidate who secured 52 marks in A.
उत्तर
Let X represent the marks in subject A and Y represent the marks in subject B.
Given `bar"X"` = 39.5, `bar"Y"` = 47.5
σX = 10.8, σY = 16.8
r(X, Y) = 0.42
∴ Regression coefficient of Y on X
byx = `"r" . (sigma_"Y")/(sigma_"X")`
= `0.42 (16.8/10.8)`
= `7.056/10.8`
= 0.653
∴ Regression line of Y on X is
`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`
Y − 47.5 = 0.653 (X − 39.5)
Y − 47.5 = 0.653X − 25.79
Y = 0.653X + 21.71
When X = 52, Y = 0.653(52) + 21.71
Y = 33.956 + 21.71
Y = 55.67
Hence, the estimate of marks in B for the candidate who secured 52 marks in A is 55.67
APPEARS IN
संबंधित प्रश्न
From the data given below:
Marks in Economics: | 25 | 28 | 35 | 32 | 31 | 36 | 29 | 38 | 34 | 32 |
Marks in Statistics: | 43 | 46 | 49 | 41 | 36 | 32 | 31 | 30 | 33 | 39 |
Find
- The two regression equations,
- The coefficient of correlation between marks in Economics and Statistics,
- The mostly likely marks in Statistics when the marks in Economics is 30.
Given the following data, what will be the possible yield when the rainfall is 29.
Details | Rainfall | Production |
Mean | 25`` | 40 units per acre |
Standard Deviation | 3`` | 6 units per acre |
Coefficient of correlation between rainfall and production is 0.8.
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
Find the equation of the regression line of Y on X, if the observations (Xi, Yi) are the following (1, 4) (2, 8) (3, 2) (4, 12) (5, 10) (6, 14) (7, 16) (8, 6) (9, 18).
For 5 observations of pairs of (X, Y) of variables X and Y the following results are obtained. ∑X = 15, ∑Y = 25, ∑X2 = 55, ∑Y2 = 135, ∑XY = 83. Find the equation of the lines of regression and estimate the values of X and Y if Y = 8; X = 12.
The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y.
The lines of regression of X on Y estimates
If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is
Find the line regression of Y on X
X | 1 | 2 | 3 | 4 | 5 | 8 | 10 |
Y | 9 | 8 | 10 | 12 | 14 | 16 | 15 |
The following information is given.
Details | X (in ₹) | Y (in ₹) |
Arithmetic Mean | 6 | 8 |
Standard Deviation | 5 | `40/3` |
Coefficient of correlation between X and Y is `8/15`. Find
- The regression Coefficient of Y on X
- The most likely value of Y when X = ₹ 100.