हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y.

योग

उत्तर

To get mean values we must solve the given lines.

4X – 5Y = – 33 ……(1)

20X – 9Y = 107 …….(2)

Equation (1) × 5

20X – 25Y = – 165

20X – 9Y = 107

Subtracting (1) and (2),

– 16Y = – 272

Y = `272/16` = 17

i.e., `bar"Y"` = 17

Using Y = 17 in (1) we get,

4X – 85 = – 33

4X = 85 – 33

4X = 52

X = 13

i.e., `bar"X"` = 13

Mean values are `bar"X"` = 13, `bar"Y"` = 17,

Let regression line of Y on X be

4X – 5Y + 33 = 0

5Y = 4X + 33

Y = `1/5` (4X + 33)

Y = `4/5"X" + 33/5`

Y = 0.8X + 6.6

∴ byx = 0.8

Let regression line of X on Y be

20X – 9Y – 107 = 0

20X = 9Y + 107

X = `1/20` (9Y + 107)

X = `9/20"Y" + 107/20`

X = 0.45Y + 5.35

∴ bxy = 0.45

Coefficient of correlation between X and Y is

r = `± sqrt("b"_"yx" xx "b"_"xy")`

r = `± (0.8 xx 0.45)`

= ± 0.6

= 0.6

Both byx and bxy is positive take positive sign.

shaalaa.com
Regression Analysis
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Correlation and Regression Analysis - Exercise 9.2 [पृष्ठ २२७]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 9 Correlation and Regression Analysis
Exercise 9.2 | Q 11 | पृष्ठ २२७

संबंधित प्रश्न

From the data given below:

Marks in Economics: 25 28 35 32 31 36 29 38 34 32
Marks in Statistics: 43 46 49 41 36 32 31 30 33 39

Find

  1. The two regression equations,
  2. The coefficient of correlation between marks in Economics and Statistics,
  3. The mostly likely marks in Statistics when the marks in Economics is 30.

The heights (in cm.) of a group of fathers and sons are given below:

Heights of fathers: 158 166 163 165 167 170 167 172 177 181
Heights of Sons: 163 158 167 170 160 180 170 175 172 175

Find the lines of regression and estimate the height of the son when the height of the father is 164 cm.


Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.


Given the following data, what will be the possible yield when the rainfall is 29.

Details Rainfall Production
Mean 25`` 40 units per acre
Standard Deviation 3`` 6 units per acre

Coefficient of correlation between rainfall and production is 0.8.


The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)

Advertisement expenditure 40 50 38 60 65 50 35
Sales 38 60 55 70 60 48 30

Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.


A survey was conducted to study the relationship between expenditure on accommodation (X) and expenditure on Food and Entertainment (Y) and the following results were obtained:

Details Mean SD
Expenditure on Accommodation (₹) 178 63.15
Expenditure on Food and Entertainment (₹) 47.8 22.98
Coefficient of Correlation 0.43

Write down the regression equation and estimate the expenditure on Food and Entertainment, if the expenditure on accommodation is ₹ 200.


The regression coefficient of X on Y


If X and Y are two variates, there can be at most


If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is


The following information is given.

Details X (in ₹) Y (in ₹)
Arithmetic Mean 6 8
Standard Deviation 5 `40/3`

Coefficient of correlation between X and Y is `8/15`. Find

  1. The regression Coefficient of Y on X
  2. The most likely value of Y when X = ₹ 100.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×