Advertisements
Advertisements
प्रश्न
Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.
उत्तर
N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480
`bar"X" = (sum"X")/"N" = 80/20` = 4
`bar"Y" - (sum"Y")/"N" = 40/20` = 2
byx = `("N"sum"XY" - (sum"X")(sum"Y"))/("N"sum"X"^2 - (sum"X")^2)`
= `(20(480) - (80)(40))/(20(1680) - (80)^2)`
= `(9600 - 3200)/(33600 - 6400)`
= `6400/27200`
= 0.235
= 0.24
Regression line of Y on X
`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`
Y − 2 = 0.24 (X − 4)
Y = 0.24X − 0.96 + 2
Y = 0.24X + 1.04
bxy = `("N"sum"XY" - (sum"X")(sum"Y"))/("N"sum"Y"^2 - (sum"Y")^2)`
= `(20(480) - (80)(40))/(20(320) - (40)^2)`
= `(9600 - 3200)/(6400 - 1600)`
= `6400/4800`
= 1.33
Regression line of X on Y
`"X" - bar"X" = "b"_"xy"("Y" - bar"Y")`
X – 4 = 1.33 (Y – 2)
X = 1.33Y – 2.66 + 4
X = 1.33Y + 1.34
APPEARS IN
संबंधित प्रश्न
The following data give the height in inches (X) and the weight in lb. (Y) of a random sample of 10 students from a large group of students of age 17 years:
X | 61 | 68 | 68 | 64 | 65 | 70 | 63 | 62 | 64 | 67 |
Y | 112 | 123 | 130 | 115 | 110 | 125 | 100 | 113 | 116 | 125 |
Estimate weight of the student of a height 69 inches.
Given the following data, what will be the possible yield when the rainfall is 29.
Details | Rainfall | Production |
Mean | 25`` | 40 units per acre |
Standard Deviation | 3`` | 6 units per acre |
Coefficient of correlation between rainfall and production is 0.8.
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
You are given the following data:
Details | X | Y |
Arithmetic Mean | 36 | 85 |
Standard Deviation | 11 | 8 |
If the Correlation coefficient between X and Y is 0.66, then find
- the two regression coefficients,
- the most likely value of Y when X = 10.
The regression coefficient of X on Y
The regression coefficient of Y on X
The lines of regression of X on Y estimates
If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is
The term regression was introduced by
The following data pertains to the marks in subjects A and B in a certain examination. Mean marks in A = 39.5, Mean marks in B = 47.5 standard deviation of marks in A = 10.8 and Standard deviation of marks in B = 16.8. coefficient of correlation between marks in A and marks in B is 0.42. Give the estimate of marks in B for the candidate who secured 52 marks in A.