Advertisements
Advertisements
प्रश्न
You are given the following data:
Details | X | Y |
Arithmetic Mean | 36 | 85 |
Standard Deviation | 11 | 8 |
If the Correlation coefficient between X and Y is 0.66, then find
- the two regression coefficients,
- the most likely value of Y when X = 10.
उत्तर
`bar"X"` = 36, `bar"Y"` = 85, σx = 11, σy = 8, r = 0.66
(i) The two regression coefficients are,
byx = `"r"(sigma_"y")/(sigma_"x") = 0.66 xx 8/11` = 0.48
bxy = `"r"(sigma_"x")/(sigma_"y") = 0.66 xx 11/8` = 0.9075 = 0.91
(ii) Regression equation of X on Y:
`"X" - bar"X" = "b"_"xy"("Y" - bar"Y")`
X – 36 = 0.91(Y – 85)
X – 36 = 0.91Y – 77.35
X = 0.91Y – 77.35 + 36
X = 0.91Y – 41.35
Regression line of Y on X:
`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`
Y – 85 = 0.48(X – 36)
Y = 0.48X – 17.28 + 85
Y = 0.48X + 67.72
The most likely value of Y when X = 10
Y = 0.48(10) + 67.72 = 72.52
APPEARS IN
संबंधित प्रश्न
Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.
Given the following data, what will be the possible yield when the rainfall is 29.
Details | Rainfall | Production |
Mean | 25`` | 40 units per acre |
Standard Deviation | 3`` | 6 units per acre |
Coefficient of correlation between rainfall and production is 0.8.
For 5 observations of pairs of (X, Y) of variables X and Y the following results are obtained. ∑X = 15, ∑Y = 25, ∑X2 = 55, ∑Y2 = 135, ∑XY = 83. Find the equation of the lines of regression and estimate the values of X and Y if Y = 8; X = 12.
The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y.
The regression coefficient of Y on X
When one regression coefficient is negative, the other would be
If X and Y are two variates, there can be at most
If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is
The term regression was introduced by
Using the following information you are requested to
- obtain the linear regression of Y on X
- Estimate the level of defective parts delivered when inspection expenditure amounts to ₹ 82
∑X = 424, ∑Y = 363, ∑X2 = 21926, ∑Y2 = 15123, ∑XY = 12815, N = 10.
Here X is the expenditure on inspection, Y is the defective parts delivered.