Advertisements
Advertisements
प्रश्न
You are given the following data:
Details | X | Y |
Arithmetic Mean | 36 | 85 |
Standard Deviation | 11 | 8 |
If the Correlation coefficient between X and Y is 0.66, then find
- the two regression coefficients,
- the most likely value of Y when X = 10.
उत्तर
`bar"X"` = 36, `bar"Y"` = 85, σx = 11, σy = 8, r = 0.66
(i) The two regression coefficients are,
byx = `"r"(sigma_"y")/(sigma_"x") = 0.66 xx 8/11` = 0.48
bxy = `"r"(sigma_"x")/(sigma_"y") = 0.66 xx 11/8` = 0.9075 = 0.91
(ii) Regression equation of X on Y:
`"X" - bar"X" = "b"_"xy"("Y" - bar"Y")`
X – 36 = 0.91(Y – 85)
X – 36 = 0.91Y – 77.35
X = 0.91Y – 77.35 + 36
X = 0.91Y – 41.35
Regression line of Y on X:
`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`
Y – 85 = 0.48(X – 36)
Y = 0.48X – 17.28 + 85
Y = 0.48X + 67.72
The most likely value of Y when X = 10
Y = 0.48(10) + 67.72 = 72.52
APPEARS IN
संबंधित प्रश्न
From the data given below:
Marks in Economics: | 25 | 28 | 35 | 32 | 31 | 36 | 29 | 38 | 34 | 32 |
Marks in Statistics: | 43 | 46 | 49 | 41 | 36 | 32 | 31 | 30 | 33 | 39 |
Find
- The two regression equations,
- The coefficient of correlation between marks in Economics and Statistics,
- The mostly likely marks in Statistics when the marks in Economics is 30.
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
The regression coefficient of Y on X
The lines of regression of X on Y estimates
If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is
The lines of regression intersect at the point
The term regression was introduced by
The following data pertains to the marks in subjects A and B in a certain examination. Mean marks in A = 39.5, Mean marks in B = 47.5 standard deviation of marks in A = 10.8 and Standard deviation of marks in B = 16.8. coefficient of correlation between marks in A and marks in B is 0.42. Give the estimate of marks in B for the candidate who secured 52 marks in A.
X and Y are a pair of correlated variables. Ten observations of their values (X, Y) have the following results. ∑X = 55, ∑XY = 350, ∑X2 = 385, ∑Y = 55, Predict the value of y when the value of X is 6.
The following information is given.
Details | X (in ₹) | Y (in ₹) |
Arithmetic Mean | 6 | 8 |
Standard Deviation | 5 | `40/3` |
Coefficient of correlation between X and Y is `8/15`. Find
- The regression Coefficient of Y on X
- The most likely value of Y when X = ₹ 100.