Advertisements
Advertisements
प्रश्न
Find the equation of the regression line of Y on X, if the observations (Xi, Yi) are the following (1, 4) (2, 8) (3, 2) (4, 12) (5, 10) (6, 14) (7, 16) (8, 6) (9, 18).
उत्तर
X | Y | X2 | Y2 | XY |
1 | 4 | 1 | 16 | 4 |
2 | 8 | 4 | 64 | 14 |
3 | 2 | 9 | 4 | 6 |
4 | 12 | 16 | 144 | 48 |
5 | 10 | 25 | 100 | 50 |
6 | 14 | 36 | 196 | 84 |
7 | 16 | 49 | 256 | 112 |
8 | 6 | 64 | 36 | 48 |
9 | 18 | 81 | 324 | 162 |
45 | 90 | 285 | 1140 | 530 |
N = 9, ΣX = 45, ΣY = 90, ΣX2 = 285, ΣY2 = 1140, ΣXY = 530, `bar"X" = (sum"X")/"N" = 45/9` = 5, `bar"Y" = (sum"Y")/"N" = 90/9` = 10
byx = `("N"sum"XY" - (sum"X")(sum"Y"))/("N"sum"X"^2 - (sum"X")^2)`
= `(9(530) - (45)(90))/(9(285) - (45)^2)`
= `(4770 - 4050)/(2565 - 2025)`
= `720/540`
= 1.33
Regression line of Y on X:
`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`
Y – 10 = 1.33 (X – 5)
Y = 1.33X – 6.65 + 10
Y = 1.33X + 3.35
APPEARS IN
संबंधित प्रश्न
The following data give the height in inches (X) and the weight in lb. (Y) of a random sample of 10 students from a large group of students of age 17 years:
X | 61 | 68 | 68 | 64 | 65 | 70 | 63 | 62 | 64 | 67 |
Y | 112 | 123 | 130 | 115 | 110 | 125 | 100 | 113 | 116 | 125 |
Estimate weight of the student of a height 69 inches.
You are given the following data:
Details | X | Y |
Arithmetic Mean | 36 | 85 |
Standard Deviation | 11 | 8 |
If the Correlation coefficient between X and Y is 0.66, then find
- the two regression coefficients,
- the most likely value of Y when X = 10.
A survey was conducted to study the relationship between expenditure on accommodation (X) and expenditure on Food and Entertainment (Y) and the following results were obtained:
Details | Mean | SD |
Expenditure on Accommodation (₹) | 178 | 63.15 |
Expenditure on Food and Entertainment (₹) | 47.8 | 22.98 |
Coefficient of Correlation | 0.43 |
Write down the regression equation and estimate the expenditure on Food and Entertainment, if the expenditure on accommodation is ₹ 200.
The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y.
The equations of two lines of regression obtained in a correlation analysis are the following 2X = 8 – 3Y and 2Y = 5 – X. Obtain the value of the regression coefficients and correlation coefficients.
If X and Y are two variates, there can be at most
If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is
The lines of regression intersect at the point
The term regression was introduced by
Find the line regression of Y on X
X | 1 | 2 | 3 | 4 | 5 | 8 | 10 |
Y | 9 | 8 | 10 | 12 | 14 | 16 | 15 |