Advertisements
Advertisements
प्रश्न
The following data give the height in inches (X) and the weight in lb. (Y) of a random sample of 10 students from a large group of students of age 17 years:
X | 61 | 68 | 68 | 64 | 65 | 70 | 63 | 62 | 64 | 67 |
Y | 112 | 123 | 130 | 115 | 110 | 125 | 100 | 113 | 116 | 125 |
Estimate weight of the student of a height 69 inches.
उत्तर
Height (X) |
Weight (Y) |
dx = X − 65 | dy = Y − 117 | dx2 | dy2 | dxdy |
61 | 112 | − 4 | − 5 | 16 | 25 | 20 |
68 | 123 | 3 | 6 | 9 | 36 | 18 |
68 | 130 | 3 | 13 | 9 | 169 | 39 |
64 | 115 | − 1 | − 2 | 1 | 4 | 2 |
65 | 110 | 0 | − 7 | 0 | 49 | 0 |
70 | 125 | 5 | 8 | 25 | 64 | 40 |
63 | 100 | − 2 | − 17 | 4 | 289 | 34 |
62 | 113 | − 3 | − 4 | 9 | 16 | 12 |
64 | 116 | − 1 | − 1 | 1 | 1 | 1 |
67 | 125 | 2 | 8 | 4 | 64 | 16 |
652 | 1169 | 2 | − 1 | 78 | 717 | 182 |
N = 10, ∑X = 652, ∑Y = 1169, ∑dx = 2, ∑dy = − 1, ∑dx2 = 78, ∑dy2 = 717, ∑dxdy = 182, `bar"X" = 652/10` = 65.2, `bar"Y" = 1169/10` = 116.9
byx = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dx"^2 - (sum"dx")^2)`
= `(10(182) - (2)(-1))/(10(78) - (2)^2)`
= `1822/776`
= 2.3479
Regression equation of Y on X
`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`
Y – 117 = 2.3479 (X – 65.2)
Y – 117 = 2.3479X – (2.3479)(65.2)
Y = 2.3479X – 153.08308 + 117
Y = 2.3479 – 36.08308
When the height X = 69 inches
Weight, Y = 2.3479(69) – 36.08308
= 162.0051 – 36.08308
= 125.92202
= 125.92 lb
APPEARS IN
संबंधित प्रश्न
The heights (in cm.) of a group of fathers and sons are given below:
Heights of fathers: | 158 | 166 | 163 | 165 | 167 | 170 | 167 | 172 | 177 | 181 |
Heights of Sons: | 163 | 158 | 167 | 170 | 160 | 180 | 170 | 175 | 172 | 175 |
Find the lines of regression and estimate the height of the son when the height of the father is 164 cm.
Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.
Given the following data, what will be the possible yield when the rainfall is 29.
Details | Rainfall | Production |
Mean | 25`` | 40 units per acre |
Standard Deviation | 3`` | 6 units per acre |
Coefficient of correlation between rainfall and production is 0.8.
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y.
The regression coefficient of X on Y
The term regression was introduced by
The following data pertains to the marks in subjects A and B in a certain examination. Mean marks in A = 39.5, Mean marks in B = 47.5 standard deviation of marks in A = 10.8 and Standard deviation of marks in B = 16.8. coefficient of correlation between marks in A and marks in B is 0.42. Give the estimate of marks in B for the candidate who secured 52 marks in A.
Find the line regression of Y on X
X | 1 | 2 | 3 | 4 | 5 | 8 | 10 |
Y | 9 | 8 | 10 | 12 | 14 | 16 | 15 |
Using the following information you are requested to
- obtain the linear regression of Y on X
- Estimate the level of defective parts delivered when inspection expenditure amounts to ₹ 82
∑X = 424, ∑Y = 363, ∑X2 = 21926, ∑Y2 = 15123, ∑XY = 12815, N = 10.
Here X is the expenditure on inspection, Y is the defective parts delivered.