मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता ११

The heights (in cm.) of a group of fathers and sons are given below: Heights of fathers: 158 166 163 165 167 170 167 172 177 181 Heights of Sons: 163 158 167 170 160 180 170 175 172 175 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The heights (in cm.) of a group of fathers and sons are given below:

Heights of fathers: 158 166 163 165 167 170 167 172 177 181
Heights of Sons: 163 158 167 170 160 180 170 175 172 175

Find the lines of regression and estimate the height of the son when the height of the father is 164 cm.

बेरीज

उत्तर

Heights of fathers
(X)
Heights of Sons
(Y)
dx = X − 168 dy = Y − 169 dx2 dy2 dxdy
158 163 − 10 − 6 100 36 − 60
166 158 − 2 − 11 4 121 22
163 167 − 5 − 2 25 4 10
165 170 − 3 1 9 1 − 3
167 160 − 1 − 9 1 81 9
170 180 2 11 4 121 22
167 170 − 1 1 1 1 −1
172 175 4 6 16 36 24
177 172 9 3 81 9 27
181 175 13 6 169 36 78
1686 1690 6 0 410 446 248

N = 10, ∑X = 1686, ∑Y = 1690, ∑dx2 = 410, ∑y2 = 446, ∑dxdy = 248, `bar"X" = 1686/10` = 168.6, `bar"Y" = 1690/10` = 169

bxy = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dy"^2 - (sum"dy")^2)`

= `(10(248) - 6(0))/((10)(446) - 0^2)`

= `2480/4460`

= 0.556

Regression equation of X on Y

`"X" - bar"X" = "b"_"xy"("Y" - bar"Y")`

X – 168.6 = 0.556 (Y – 169)

X – 168.6 = 0.556Y – 93.964

 X = 0.556Y – 93.964 + 168.6

X = 0.556Y + 76.636

X = 0.556Y + 74.64

byx = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dx"^2 - (sum"dx")^2)`

= `(10(248) - 0)/(10(410) - 6^2)`

= `2480/(4100 - 36)`

= `2480/4064`

= 0.610

Regression equation of Y on X

`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`

Y − 169 = 0.610 (X − 168.6)

Y – 169 = 0.610X – 102.846

Y = 0.610X – 102.846 + 169

Y = 0.610X + 66.154 ………(1)

To get son’s height (Y) when the father height is X = 164 cm.

Put X = 164 cm in equation (1) we get

Son’s height = 0.610 × 164 + 66.154

= 100.04 + 66.154 

= 166.19 cm

shaalaa.com
Regression Analysis
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Correlation and Regression Analysis - Exercise 9.2 [पृष्ठ २२६]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
पाठ 9 Correlation and Regression Analysis
Exercise 9.2 | Q 2 | पृष्ठ २२६

संबंधित प्रश्‍न

The following data give the height in inches (X) and the weight in lb. (Y) of a random sample of 10 students from a large group of students of age 17 years:

X 61 68 68 64 65 70 63 62 64 67
Y 112 123 130 115 110 125 100 113 116 125

Estimate weight of the student of a height 69 inches.


Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.


The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)

Advertisement expenditure 40 50 38 60 65 50 35
Sales 38 60 55 70 60 48 30

Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.


For 5 observations of pairs of (X, Y) of variables X and Y the following results are obtained. ∑X = 15, ∑Y = 25, ∑X2 = 55, ∑Y2 = 135, ∑XY = 83. Find the equation of the lines of regression and estimate the values of X and Y if Y = 8; X = 12.


When one regression coefficient is negative, the other would be


If X and Y are two variates, there can be at most


The lines of regression of X on Y estimates


If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is


The term regression was introduced by


The following information is given.

Details X (in ₹) Y (in ₹)
Arithmetic Mean 6 8
Standard Deviation 5 `40/3`

Coefficient of correlation between X and Y is `8/15`. Find

  1. The regression Coefficient of Y on X
  2. The most likely value of Y when X = ₹ 100.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×