Advertisements
Advertisements
प्रश्न
When one regression coefficient is negative, the other would be
पर्याय
Negative
Positive
Zero
None of them
उत्तर
Negative
APPEARS IN
संबंधित प्रश्न
The following data give the height in inches (X) and the weight in lb. (Y) of a random sample of 10 students from a large group of students of age 17 years:
X | 61 | 68 | 68 | 64 | 65 | 70 | 63 | 62 | 64 | 67 |
Y | 112 | 123 | 130 | 115 | 110 | 125 | 100 | 113 | 116 | 125 |
Estimate weight of the student of a height 69 inches.
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
You are given the following data:
Details | X | Y |
Arithmetic Mean | 36 | 85 |
Standard Deviation | 11 | 8 |
If the Correlation coefficient between X and Y is 0.66, then find
- the two regression coefficients,
- the most likely value of Y when X = 10.
Find the equation of the regression line of Y on X, if the observations (Xi, Yi) are the following (1, 4) (2, 8) (3, 2) (4, 12) (5, 10) (6, 14) (7, 16) (8, 6) (9, 18).
For 5 observations of pairs of (X, Y) of variables X and Y the following results are obtained. ∑X = 15, ∑Y = 25, ∑X2 = 55, ∑Y2 = 135, ∑XY = 83. Find the equation of the lines of regression and estimate the values of X and Y if Y = 8; X = 12.
The equations of two lines of regression obtained in a correlation analysis are the following 2X = 8 – 3Y and 2Y = 5 – X. Obtain the value of the regression coefficients and correlation coefficients.
If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is
The lines of regression intersect at the point
The term regression was introduced by
The following information is given.
Details | X (in ₹) | Y (in ₹) |
Arithmetic Mean | 6 | 8 |
Standard Deviation | 5 | `40/3` |
Coefficient of correlation between X and Y is `8/15`. Find
- The regression Coefficient of Y on X
- The most likely value of Y when X = ₹ 100.