मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता ११

The equations of two lines of regression obtained in a correlation analysis are the following 2X = 8 – 3Y and 2Y = 5 – X. Obtain the value of the regression coefficients and correlation coefficients. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The equations of two lines of regression obtained in a correlation analysis are the following 2X = 8 – 3Y and 2Y = 5 – X. Obtain the value of the regression coefficients and correlation coefficients.

बेरीज

उत्तर

Let regression line of Y on X be,

2Y = 5 – X

Y = – 0.5X + 2.5

byx = – 0.5

i.e., byx = `-1/2`

Let regression line of X on Y be

2X = 8 – 3Y

X = – 1.5Y + 4

bxy = – 1.5

i.e., bxy = `-3/2`

Correlation coefficient (r) = `± sqrt("b"_"xy" xx "b"_"yx")`

= `± sqrt(1.5 xx 0.5)`

= – 0.866

Both bxy and byx is negative so take a negative sign.

shaalaa.com
Regression Analysis
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Correlation and Regression Analysis - Exercise 9.2 [पृष्ठ २२७]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
पाठ 9 Correlation and Regression Analysis
Exercise 9.2 | Q 12 | पृष्ठ २२७

संबंधित प्रश्‍न

The following data give the height in inches (X) and the weight in lb. (Y) of a random sample of 10 students from a large group of students of age 17 years:

X 61 68 68 64 65 70 63 62 64 67
Y 112 123 130 115 110 125 100 113 116 125

Estimate weight of the student of a height 69 inches.


Given the following data, what will be the possible yield when the rainfall is 29.

Details Rainfall Production
Mean 25`` 40 units per acre
Standard Deviation 3`` 6 units per acre

Coefficient of correlation between rainfall and production is 0.8.


The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)

Advertisement expenditure 40 50 38 60 65 50 35
Sales 38 60 55 70 60 48 30

Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.


Find the equation of the regression line of Y on X, if the observations (Xi, Yi) are the following (1, 4) (2, 8) (3, 2) (4, 12) (5, 10) (6, 14) (7, 16) (8, 6) (9, 18).


For 5 observations of pairs of (X, Y) of variables X and Y the following results are obtained. ∑X = 15, ∑Y = 25, ∑X2 = 55, ∑Y2 = 135, ∑XY = 83. Find the equation of the lines of regression and estimate the values of X and Y if Y = 8; X = 12.


The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y.


The regression coefficient of X on Y


The lines of regression of X on Y estimates


The lines of regression intersect at the point


The following information is given.

Details X (in ₹) Y (in ₹)
Arithmetic Mean 6 8
Standard Deviation 5 `40/3`

Coefficient of correlation between X and Y is `8/15`. Find

  1. The regression Coefficient of Y on X
  2. The most likely value of Y when X = ₹ 100.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×