Advertisements
Advertisements
प्रश्न
Given the following data, what will be the possible yield when the rainfall is 29.
Details | Rainfall | Production |
Mean | 25`` | 40 units per acre |
Standard Deviation | 3`` | 6 units per acre |
Coefficient of correlation between rainfall and production is 0.8.
उत्तर
`bar"X"` = 25, σx = 3, `bar"Y"` = 40, σy = 6, r = 0.8
byx = `"r"(sigma_"y")/(sigma_"x") = 0.8 xx 6/3` = 1.6
`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`
Y − 40 = 1.6 (X − 25)
Y − 40 = 1.6X − (1.6)(25)
Y − 40 = 1.6X − 40
∴ Y = 1.6X
To find the yield when the rainfall is 29″
Put X = 29 in the above equation we get yield,
Y = 1.6 × 29 = 46.4 units/acre
APPEARS IN
संबंधित प्रश्न
The following data give the height in inches (X) and the weight in lb. (Y) of a random sample of 10 students from a large group of students of age 17 years:
X | 61 | 68 | 68 | 64 | 65 | 70 | 63 | 62 | 64 | 67 |
Y | 112 | 123 | 130 | 115 | 110 | 125 | 100 | 113 | 116 | 125 |
Estimate weight of the student of a height 69 inches.
Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y.
The regression coefficient of X on Y
The regression coefficient of Y on X
If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is
The following data pertains to the marks in subjects A and B in a certain examination. Mean marks in A = 39.5, Mean marks in B = 47.5 standard deviation of marks in A = 10.8 and Standard deviation of marks in B = 16.8. coefficient of correlation between marks in A and marks in B is 0.42. Give the estimate of marks in B for the candidate who secured 52 marks in A.
X and Y are a pair of correlated variables. Ten observations of their values (X, Y) have the following results. ∑X = 55, ∑XY = 350, ∑X2 = 385, ∑Y = 55, Predict the value of y when the value of X is 6.
Find the line regression of Y on X
X | 1 | 2 | 3 | 4 | 5 | 8 | 10 |
Y | 9 | 8 | 10 | 12 | 14 | 16 | 15 |