Advertisements
Advertisements
प्रश्न
The regression coefficient of Y on X
पर्याय
bxy = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dy"^2 - (sum"dy")^2)`
byx = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dy"^2 - (sum"dy")^2)`
byx = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dx"^2 - (sum"dx")^2)`
bxy = `("N"sum"xy" - (sum"x")(sum"y"))/(sqrt("N"sum"x"^2 - (sum"x")^2) xx sqrt("N"sum"y"^2 - (sum"y")^2))`
उत्तर
byx = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dx"^2 - (sum"dx")^2)`
APPEARS IN
संबंधित प्रश्न
The heights (in cm.) of a group of fathers and sons are given below:
Heights of fathers: | 158 | 166 | 163 | 165 | 167 | 170 | 167 | 172 | 177 | 181 |
Heights of Sons: | 163 | 158 | 167 | 170 | 160 | 180 | 170 | 175 | 172 | 175 |
Find the lines of regression and estimate the height of the son when the height of the father is 164 cm.
The following data give the height in inches (X) and the weight in lb. (Y) of a random sample of 10 students from a large group of students of age 17 years:
X | 61 | 68 | 68 | 64 | 65 | 70 | 63 | 62 | 64 | 67 |
Y | 112 | 123 | 130 | 115 | 110 | 125 | 100 | 113 | 116 | 125 |
Estimate weight of the student of a height 69 inches.
Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.
Given the following data, what will be the possible yield when the rainfall is 29.
Details | Rainfall | Production |
Mean | 25`` | 40 units per acre |
Standard Deviation | 3`` | 6 units per acre |
Coefficient of correlation between rainfall and production is 0.8.
You are given the following data:
Details | X | Y |
Arithmetic Mean | 36 | 85 |
Standard Deviation | 11 | 8 |
If the Correlation coefficient between X and Y is 0.66, then find
- the two regression coefficients,
- the most likely value of Y when X = 10.
The equations of two lines of regression obtained in a correlation analysis are the following 2X = 8 – 3Y and 2Y = 5 – X. Obtain the value of the regression coefficients and correlation coefficients.
When one regression coefficient is negative, the other would be
The lines of regression intersect at the point
Find the line regression of Y on X
X | 1 | 2 | 3 | 4 | 5 | 8 | 10 |
Y | 9 | 8 | 10 | 12 | 14 | 16 | 15 |
Using the following information you are requested to
- obtain the linear regression of Y on X
- Estimate the level of defective parts delivered when inspection expenditure amounts to ₹ 82
∑X = 424, ∑Y = 363, ∑X2 = 21926, ∑Y2 = 15123, ∑XY = 12815, N = 10.
Here X is the expenditure on inspection, Y is the defective parts delivered.