Advertisements
Advertisements
Question
The regression coefficient of Y on X
Options
bxy = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dy"^2 - (sum"dy")^2)`
byx = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dy"^2 - (sum"dy")^2)`
byx = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dx"^2 - (sum"dx")^2)`
bxy = `("N"sum"xy" - (sum"x")(sum"y"))/(sqrt("N"sum"x"^2 - (sum"x")^2) xx sqrt("N"sum"y"^2 - (sum"y")^2))`
Solution
byx = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dx"^2 - (sum"dx")^2)`
APPEARS IN
RELATED QUESTIONS
The heights (in cm.) of a group of fathers and sons are given below:
Heights of fathers: | 158 | 166 | 163 | 165 | 167 | 170 | 167 | 172 | 177 | 181 |
Heights of Sons: | 163 | 158 | 167 | 170 | 160 | 180 | 170 | 175 | 172 | 175 |
Find the lines of regression and estimate the height of the son when the height of the father is 164 cm.
Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
Find the equation of the regression line of Y on X, if the observations (Xi, Yi) are the following (1, 4) (2, 8) (3, 2) (4, 12) (5, 10) (6, 14) (7, 16) (8, 6) (9, 18).
The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y.
The equations of two lines of regression obtained in a correlation analysis are the following 2X = 8 – 3Y and 2Y = 5 – X. Obtain the value of the regression coefficients and correlation coefficients.
The regression coefficient of X on Y
If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is
The lines of regression intersect at the point
The term regression was introduced by