Advertisements
Advertisements
Question
The regression coefficient of X on Y
Options
bxy = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dy"^2 - (sum"dy")^2)`
byx = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dy"^2 - (sum"dy")^2)`
bxy = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dx"^2 - (sum"dx")^2)`
by = `("N"sum"xy" - (sum"x")(sum"y"))/(sqrt("N"sum"x"^2 - (sum"x")^2) xx sqrt("N"sum"y"^2 - (sum"y")^2))`
Solution
bxy = `("N"sum"dxdy" - (sum"dx")(sum"dy"))/("N"sum"dy"^2 - (sum"dy")^2)`
APPEARS IN
RELATED QUESTIONS
The heights (in cm.) of a group of fathers and sons are given below:
Heights of fathers: | 158 | 166 | 163 | 165 | 167 | 170 | 167 | 172 | 177 | 181 |
Heights of Sons: | 163 | 158 | 167 | 170 | 160 | 180 | 170 | 175 | 172 | 175 |
Find the lines of regression and estimate the height of the son when the height of the father is 164 cm.
Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.
You are given the following data:
Details | X | Y |
Arithmetic Mean | 36 | 85 |
Standard Deviation | 11 | 8 |
If the Correlation coefficient between X and Y is 0.66, then find
- the two regression coefficients,
- the most likely value of Y when X = 10.
Find the equation of the regression line of Y on X, if the observations (Xi, Yi) are the following (1, 4) (2, 8) (3, 2) (4, 12) (5, 10) (6, 14) (7, 16) (8, 6) (9, 18).
The equations of two lines of regression obtained in a correlation analysis are the following 2X = 8 – 3Y and 2Y = 5 – X. Obtain the value of the regression coefficients and correlation coefficients.
The regression coefficient of Y on X
When one regression coefficient is negative, the other would be
The lines of regression of X on Y estimates
X and Y are a pair of correlated variables. Ten observations of their values (X, Y) have the following results. ∑X = 55, ∑XY = 350, ∑X2 = 385, ∑Y = 55, Predict the value of y when the value of X is 6.
Find the line regression of Y on X
X | 1 | 2 | 3 | 4 | 5 | 8 | 10 |
Y | 9 | 8 | 10 | 12 | 14 | 16 | 15 |