English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 11

The term regression was introduced by - Business Mathematics and Statistics

Advertisements
Advertisements

Question

The term regression was introduced by

Options

  • R. A. Fisher

  • Sir Francis Galton

  • Karl Pearson

  • Croxton and Cowden

MCQ

Solution

Sir Francis Galton

shaalaa.com
Regression Analysis
  Is there an error in this question or solution?
Chapter 9: Correlation and Regression Analysis - Exercise 9.3 [Page 229]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 11 TN Board
Chapter 9 Correlation and Regression Analysis
Exercise 9.3 | Q 22 | Page 229

RELATED QUESTIONS

From the data given below:

Marks in Economics: 25 28 35 32 31 36 29 38 34 32
Marks in Statistics: 43 46 49 41 36 32 31 30 33 39

Find

  1. The two regression equations,
  2. The coefficient of correlation between marks in Economics and Statistics,
  3. The mostly likely marks in Statistics when the marks in Economics is 30.

Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.


You are given the following data:

Details X Y
Arithmetic Mean 36 85
Standard Deviation 11 8

If the Correlation coefficient between X and Y is 0.66, then find

  1. the two regression coefficients,
  2. the most likely value of Y when X = 10.

A survey was conducted to study the relationship between expenditure on accommodation (X) and expenditure on Food and Entertainment (Y) and the following results were obtained:

Details Mean SD
Expenditure on Accommodation (₹) 178 63.15
Expenditure on Food and Entertainment (₹) 47.8 22.98
Coefficient of Correlation 0.43

Write down the regression equation and estimate the expenditure on Food and Entertainment, if the expenditure on accommodation is ₹ 200.


For 5 observations of pairs of (X, Y) of variables X and Y the following results are obtained. ∑X = 15, ∑Y = 25, ∑X2 = 55, ∑Y2 = 135, ∑XY = 83. Find the equation of the lines of regression and estimate the values of X and Y if Y = 8; X = 12.


The regression coefficient of Y on X


When one regression coefficient is negative, the other would be


The lines of regression intersect at the point


X and Y are a pair of correlated variables. Ten observations of their values (X, Y) have the following results. ∑X = 55, ∑XY = 350, ∑X2 = 385, ∑Y = 55, Predict the value of y when the value of X is 6.


The following information is given.

Details X (in ₹) Y (in ₹)
Arithmetic Mean 6 8
Standard Deviation 5 `40/3`

Coefficient of correlation between X and Y is `8/15`. Find

  1. The regression Coefficient of Y on X
  2. The most likely value of Y when X = ₹ 100.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×